

End of Project Documentation

Data Collection of Motorized Vehicles

D.c.M.V

April 27, 2020

Professor Russ Tatro

CpE 191/EEE 193B

Team 4 - Team Four Starz

Sergio Cortes, Michael Khoo, Ryan Uda

i

TABLE OF CONTENTS

Executive Summary ... v

I. Introduction ... 1

II. Societal Problem ... 3

A. Overview of Societal Problem .. 3

B. Background and Design.. 3

C. Benefits ... 5

III. Design Idea ... 5

A. Resources.. 5

B. Feature Set .. 7

C. Identification .. 7

D. Occupancy .. 9

E. Car Counting .. 9

F. Power .. 10

G. Database and GUI... 11

H. Integration .. 12

IV. Funding ... 12

V. Project Milestones ... 15

VI. Work Breakdown Structure .. 17

VII. Risk Assessment ... 22

A. Critical Path Risk Mitigation .. 22

B. Risk Mitigation for Non-critical Path ... 24

C. Final Thoughts on Risks and Mitigations ... 25

VIII. Design Philosophy .. 26

A. Data Collection ... 26

B. Cost-Effective and Accessible .. 27

IX. Deployable Prototype Status .. 27

A. Identification .. 27

B. Occupancy .. 28

C. Car Counting .. 28

D. Power .. 29

E. Database and GUI... 29

X. Marketability Forecast .. 29

A. Perceived Market Audience .. 30

B. Comparable Services and Products .. 31

C. Market Value .. 32

D. Refining Needed ... 33

XI. Conclusion .. 34

References ... 37

Glossary ... 39

ii

Appendix A. User Manual ... A-1

A. In the field operation ... A-1

B. Modifying the detection parameters .. A-2

C. Uploading the collected data to the database ... A-3

D. Charging .. A-7

Appendix B. Hardware ... B-1

Appendix C. Software ... C-1

Software Flowcharts .. C-1

Application Specific Code Review for the Car Parking Detection Program ... C-3

Application Specific Code Review for the Car Counting Program ... C-5

Application Specific Code Review for the GUI Program .. C-6

Software Test Results .. C-8

Appendix D. Mechanical Aspects .. D-1

Appendix E. Vendor Contacts .. E-1

Appendix F. Resumes .. F-1

iii

TABLE OF FIGURES

Figure 1: Schematic of Loop Detector [1] ... 4
Figure 2: Example of a convolutional neural net, LeNet-5 [6] .. 8
Figure 3: Multiple parking detection program [7] ... 9
Figure 4: Prototype car counting program [8] ... 10
Figure 5: Power Bank [10] .. 10
Figure 6: Power Bank Switches [10] ... 11
Figure 7: Database [11] ... 11
Figure 8: GUI [11] ... 12
Figure 9: Laboratory Prototype [13] .. 16
Figure 10: Enclosure [14] .. 17
Figure 11: Risk Assessment Heatmap [17] .. 24
Figure 12: Bus identified [7].. 28
Figure 13: Parked motorcycle [7] .. 28
Figure 14: Horizontal thresholds [7] .. 28
Figure 15: Vertical thresholds [7] .. 29
Figure 16: Raw data [11] ... 29
Figure 17: GUI and data [11] ... 29
Figure 18: The California Department of Transportation Logo [20] ... 30
Figure 19: Attractive opportunities in the Traffic Management Market [26] .. 32
Figure A 1: Team4 Device I/O [14].. A-1

Figure A 2: Team4 Change Directory [7] ... A-1
Figure A 3: Team4 Start Program [7] ... A-2
Figure A 4: Team4 Car Park App Spots [7] ... A-2
Figure A 5: Team4 Car Park App Integer Parameters [7] .. A-3
Figure A 6: Team4 Car Park App Boolean Parameters [7] .. A-3
Figure A 7: Team4 Car Park App String Parameters [7] .. A-3
Figure A 8: Team4 Counting App Entrance Coordinate [7] ... A-3
Figure A 9: Team4 Counting App Exit Coordinate [7] .. A-3
Figure A 10: Team4 Import Parking Data [11] .. A-4
Figure A 11: Team4 Import Car Count Data [11] .. A-4
Figure A 12: Team4 Show All Parked Entries [11] .. A-5
Figure A 13: Team4 Select Hour Range [11] ... A-5
Figure A 14: Team4 Select Vehicle [11] .. A-6
Figure A 15: Team4 Select Spot [11] ... A-6
Figure A 16: Team4 Select Session [11] .. A-7
Figure B 1: System Hardware [29] ..B-1

Figure C 1: Team4 Python Application Workflow [7] ...C-1

Figure C 2: TensorFlow Object Detection API [30] .. C-1
Figure C 3: Training Pipeline [30] ... C-2
Figure C 4: GUI Flowchart [11] .. C-2
Figure C 5: TEMT6000 circuit [10] .. C-8
Figure C 6: Structure 5 lux level [10] .. C-8
Figure C 7: Structure 3 lux level [10] .. C-9
Figure C 8: Primary Key Test: Sample Data in Database [11] ... C-10
Figure C 9: Primary Key Test: Sample Data to Transfer to Database [11] ... C-10
Figure C 10: Sample Data Used to Test GUI SQL Filters [11] ... C-13
Figure C 11: Time Range Filter of Parking Data: 08:00:00 – 09:00:00 part 1 [11] ... C-13
Figure C 12:Vehicle Type Filter of Parking Data: Truck [11]... C-14
Figure C 13: Vehicle Type Filter of Parking Data: Bus [11] ... C-14
Figure C 14: Vehicle Type Filter of Parking Data: Car part1 [11] .. C-15
Figure C 15: Vehicle Type Filter of Parking Data: Car part 2 [11] ... C-15
Figure D 1: Full enclosure [14] .. D-1

Figure D 2: Enclosure with Nano exposed [14] .. D-2
Figure D 3: Full enclosure profile view [14] .. D-2
Figure D 4: Team 4 Full Printed Enclosure Design [14] .. D-3

iv

TABLE OF TABLES

Table I: Nano vs RPi 3 B+ [2] ... 6
Table II. USB Camera vs RPi Cam V2 [3] .. 6
Table III. Expenses [12] .. 14
Table IV. Project Schedule, Milestones and Assignments [15] ... 18
Table V. Work Breakdown Tallied Hours [15] ... 20
Table B I. Prolonged Use Test 1 [10] ...B-2
Table B II. Prolonged Use Test 2 [10] ... B-2
Table C I. Runtimes in seconds of GUI to upload 400 entries (left) and 1,000 entries (right) [11] ..C-11
Table C II. Runtimes in seconds of GUI to upload 400 entries (left) and 1,000 entries (right) [11] ... C-12

v

Executive Summary

Elevator Pitch — Our project aims to create a cost-effective image recognition system to

detect and collect parking data of vehicles in parking spots.

The team began on a journey to find a solution to the parking problem at Sacramento State.

During the peak hours of traffic, it becomes increasingly difficult to find an open parking spot,

which leads to drivers circling within a parking structure and causing traffic congestion. The

original solution the team agreed upon was to create a smart parking system that would direct

drivers to open parking spots and improve the flow of traffic. However, after discussions with a

professional in the field and our senior design professor, the team came to the realization that this

approach was a naïve solution to problem that was much more nuanced and far too much of an

undertaking for three college students without a background in traffic management. The final

solution reached was to create an image recognition system, that was cost-effective, and would

collect good and accurate parking data, this data would then be given to traffic professionals so

that they could create solutions; this project would set the foundation for the solving of our

societal problem. The system would also offer a more cost-effective option for data collection

that is portable, easy to set up, and can be utilized in remote locations away from external power

sources.

The main tasks the system had to accomplish were as follows; identify and categorize vehicles

in a parking area at Sacramento State, distinguish occupancy of 4 car parking spots, keep an

integer count of identified vehicles entering and exiting the area, run for 10 hours via battery, and

have a GUI that will allow the user to transfer the recorded data to a database and display the

data collected. These were parameters agreed upon by the team and were the functionality goals

set for the deployable prototype. The funding for this project came out of the team’s pocket, with

the project’s budget being about $1,000.00, we accomplished our feature set with measurable

metrics well under our budget.

 A few of the important milestones of the project were the successful training of a recognition

model that could identify toy-scaled vehicles, integration of the model to a microprocessor in

order to run spot monitoring and car counting programs, upscaling to full-scale vehicles, the

completion of the power bank and the enclosure, and the completion of a GUI that allowed

filtering of the data the user wished to analyze. The workload was broken down between the

three teammates with each one working on the aspects they specialized in. The team assessed a

few risks that could occur during the project and thought of ways to mitigate them and continue

working on the project even in the worst-case scenarios. The report will discuss the big picture of

the project build and the status of the deployable prototype, as well as the marketability of the

completed project.

1

Abstract — As Sacramento State student

enrollment continues to grow, so will the

duration and frequency of traffic jams on

campus caused by students searching for an

open parking spot. Since developing an

elegant traffic management solution is beyond

the team’s capabilities, we chose to focus on

creating a system that collects parking data for

professionals which may allow them to better

understand the parking behavior at Sacramento

State and develop a solution.

This report documents our data collection

system. The system uses image recognition to

monitor parking spots in order to record the

type of vehicle that was parked, when it was

parked, when it left, which spot was it parked

in, and how many vehicles have parked in

each spot per recording session. The system

can also record when a vehicle has entered or

exited a parking area, the type of car that

entered or exited, and how many have entered

or exited per session. The report will discuss

the societal problem the team set out to solve,

our design idea to tackle said problem. The

project funding, milestones, and how the team

dispersed the workload. The team assessed

some possible risks and how they would be

mitigated. The report will also discuss the

broad picture of the project and the

marketability of the final design. And, the

report will discuss the status of the final

deployable prototype.

Keyword Index – deployable prototype,

funding, milestones, “parking problem”,

project, risks, Sacramento State

I. INTRODUCTION

Every semester at Sacramento State there is

an increase in students being admitted that is

outpacing readily available parking spots. To

accommodate for the increase in students, the

university has built a new parking structure

and is even in the process of creating more

residence halls in order to reduce commuting

students. However, students will continue to

drive to, and park, on campus as external

housing is more affordable. There is also the

matter of Sacramento State’s faculty

commuting to campus. From professors to

administrative staff, most of them need to

drive and park on a consistent day-today basis.

Commuting students may also be inclined to

stay on campus despite not having a class

scheduled for the day since Sacramento State

provides many amenities such as The WELL,

so that also contributes to parking spot scarcity

and in turn introduces additional traffic on

campus from commuters looking for a place to

park. So, the combination of increasing student

enrollment, need for faculty and staff parking,

and draw of on campus commodities there is a

large number of vehicles that need to be

parked on campus.

Sacramento State only has two entrances, a

South and a North entrance, that allows

vehicles to enter the campus. So, while a few

drivers are stuck looping around a parking area

looking for an open parking spot the flow of

all the traffic is halted creating giant traffic

jams. Drivers can spend around 40 minutes

looking for a parking spot. Combined with the

traffic from the everyday hustle and bustle,

this can cause students to be late to their

classes.

Our project aims to solve the “parking

problem” at Sacramento State. The original

solution was to create a smart parking system

similar to that present in parking structure 5

with the added component of direct driver’s

directly to the available spot. The system

would involve a user interface that would

allow for the reservation of a parking spot and

directions to said spot, however, we found this

approach introduced too much human error

and would be extremely costly. A smart

parking system like the one present in parking

structure 5 utilizes inductive sensors in each

parking spot, and these sensors require

invasive maintenance. So, the team decided to

create a cost-effective image recognition

system that could collect good accurate data of

vehicles entering, parking, and exiting a

2

parking area. Our project will collect the data

that professionals could analyze to create a

solution for the “parking problem” at

Sacramento State, it would set the foundation

for the solution.

The main function of the project is to collect

good accurate data that can be appropriately

analyzed by a professional. With some

guidance from a traffic professional and the

course instructor the team was able to create a

specific set of features the system is able to

perform. The first feature is the system is able

to identify vehicles entering and exiting the

parking area as either a truck, a car, a bus, or a

motorcycle. The second feature is the system

will be able to distinguish the occupancy of

four individual single-car parking spots and

keep track of the start and end time duration of

the vehicle parked in each spot. The third

feature calls for the system to keep an integer

count of the identified vehicles entering and

exiting the parking area. The fourth feature

allows the system to be used portably for at

least 10 hours. And, the final feature

introduces a GUI that allows for the filtering

of the recorded database for analyzation

purposes.

 The project was funded by the team. Each

team member paid for the parts that were

required for their individual tasks. The most

expensive individual part was the NVIDIA

Jetson Nano which cost about $100 dollars and

the second most expensive piece was the 3D

printing of the enclosure which cost $50.

As the year progressed and the team

continued working many milestones were

reached. They mainly revolved around the

completion of the project’s features. The

biggest milestones were when the system was

able to identify scaled down models and later

full-scale vehicles, as well as the completion

of the enclosure due to the constant delays in

the 3D printing process. The approved

completion of the project was a huge moment

for the team because we had a rather slow start

and are only a team of three.

The project could be divided into three main

tasks; the identification program, the

portability, and the GUI/database. Michael

took the command of the system

programming. Sergio took care of the power

bank and enclosure for the system. Ryan was

responsible for developing a GUI to interface

with a database that stored collected data.

The team had to take the possible risks, that

could delay the project or financially burden

the budget, into consideration and think of

ways to mitigate these risks. The biggest

possible setbacks would be the complete loss

of our program and trained models, so we

created multiple save files and different save

locations. The other major risk is the damaging

of the development board that runs our

program, so we purchased another unit.

The team believes the product is quite

marketable, one of the points our expert

consultant informed us of is the fact that the

companies that already perform the tasks our

project does are very proprietary. Those

companies charge the client for the use of the

system as well as for the analyzing of the data

collected; the client never has access to the

data collected and has to pay a large amount of

money. Our system would collect the data and

allow the client to analyze the data themselves,

creating a more transparent process. The

system is also cost-effective, so more clients

would be attracted to the lower prices of use

and the transparency of the data collected.

The system is portable and can be used in

remote locations. The camera is connected via

a USB cable, so the camera can be placed or

mounted in whichever location is more

convenient for the user. The enclosure protects

the system from the environment and creates a

hardy system. The deployable prototype was

fully completed with the full functioning of the

system and the completion of the enclosure

and power bank.

3

II. SOCIETAL PROBLEM

A. Overview of Societal Problem

Finding an open parking spot can be a

frustrating and time-consuming endeavor.

Whether it be at the mall, downtown, sporting

events, college campuses, etc., a lot of time is

wasted just looking for open spots which are

often very limited. Strategies like assigned

parking or staff physically directing vehicles to

spots streamline the parking process.

However, assigned parking and in person

assisted directing is often an impractical

strategy for facilities that provide services to

clients whom outnumber available parking and

are coming and going throughout the day.

During peak hours of traffic at Sacramento

State, dozens of drivers are attempting to enter

campus and find a parking spot. Along with an

ever-growing admission rate and only two

entrances to campus, parking spots fill up

quickly and the flow of traffic suffers. The

North End, which is off J Street, and the South

End, which is off the U.S. 50 freeway.

Therefore, circulation becomes a major

problem if drivers don’t know where to find a

parking spot and end up roaming around

campus cluelessly. Drivers will enter a parking

structure looking for a parking spot and upon

not finding one will begin to circle numerous

times in hopes of a spot opening; dozens of

drivers will circle the parking structure

creating traffic jams. If drivers are unlucky

then they have to sit through more traffic just

to exit that structure and repeat the process in a

different parking structure. On the Sacramento

campus there is only one parking structure that

includes an electronic board that displays the

amount of available parking spots in the

structure. However, this parking structure is

located the furthest from the classroom halls

so most students park in a different structure.

Parking Structure II and Parking Structure III

are where this situation is the worst, since they

are the closest to the U.S. 50 freeway off-ramp

every driver goes directly to those locations.

Finding an open parking spot and it not being

stolen by another driver just as you are

approaching it could take up to 30 minutes.

Combined with city traffic of the daily hustle

and bustle, students could end up missing up

to half of their class. This could be detrimental

to a student’s grade. There is the need for a

sense of parking security.

The societal problem our team tackles is the

traffic congestion on college campuses caused

by people searching aimlessly for limited

parking spots. A clear solution for the problem

is guidance to an open parking spot; this would

help lessen traffic congestion by directing

clueless drivers to an unoccupied parking spot.

The initial problem statement idea sought to

implement a Smart Parking System (SPS) that

would allow the driver to reserve a parking

spot and would then be directly led to that

location. However, this would require a large

quantity of sensors and there is no way in

which to enforce the reservation of the spot.

Thanks to the insight of our technical advisers,

the live relay of the available parking spots

would not adequately solve the parking issue

as there are too many variables to account for

in order to develop the system in a way that

would efficiently direct people to a parking

spot without causing more issues. Thus, the

design goal shifted away from focusing on

advertising open spots to people looking to

park. Instead the team decided to develop a

system that would collect data on parking

statistics which can be used by professionals

more attuned with traffic management, then

the team is, to develop a sufficient method to

streamline the parking process for all.

B. Background and Design

With the help of transportation engineer and

traffic expert Professor Ghazan Khan, we were

able to develop a more obtainable solution.

Originally the team thought that with the use

4

of sensors and image recognition we will

create a system to notify drivers of the

available parking spots in a parking structure.

Our team was advised by our technical adviser

Professor Russ Tatro, and Professor Khan, that

alleviating the parking issue on campus would

require more than just simply advertising the

available spots. For example, if everyone

looking for a spot was notified of an available

spot, a large influx of traffic would flock to

said spot and, aside for one person, would find

someone got there before them. This would be

an insufficient solution to a very complex and

nuanced problem. Instead, our team’s goal is

to create a cost-effective method to monitor

parking spots and collect statistics on their

occupancy. The collected data would then

provide the means for professionals in the field

of traffic management to develop an adequate

solution to the parking issue. The team then

sought out ways to collect parking data and

find the most cost-effective and practical

methods.

Through research, inductive loop sensors are

among the most widely used methods for

vehicle detection today. These sensors are

embedded under the pavement of entrances,

exits, and parking spots of parking structures.

It typically yields an accurate vehicle count.

Figure 1 shows us a schematic of how loop

detectors work.

Figure 1: Schematic of Loop Detector [1]

When a motorized vehicle passes over the

sensor, the metal underside of said vehicle will

gloss over the loop wires causing an induction

which translates to current flowing through the

wires. This sends a signal to the control system

as a pulse. And while our system will also

keep count of vehicles entering and exiting the

parking area, we intend to take more detailed

data than just a number count. Whether it be a

car, truck, motorcycle, or a metal cart, there is

a chance that unintended objects will trigger

the loop detector. This will contribute to the

counting of vehicles making the system

inaccurate. Several factors affect the reliability

of the loop detector output data such as traffic

density, vehicle movements, traffic

composition and physical characteristics of the

intersection such as pavement condition.

Depending on the traffic density and traffic

composition, the loop detectors may produce a

constant pulse simulating a very long vehicle.

These inductive sensors are costly electronic

components and are also extremely expensive

to install and maintain due to their invasive

installation method. They must be

implemented into the ground so installing

them into already built locations would require

tearing up the ground, and the same goes for

maintenance. The process of digging them out

of the ground, conducting maintenance, and

then reburying them and patching up the

ground would require a good amount of time.

During this time there would be lesser parking

spots available, adding to the problem that is

being tackled.

The team intends to create a cost-effective,

accessible, and noninvasive method of

surveying. Thus, the team decided to develop a

system that will use a camera and a

development board in order monitor and

collect parking statistics data in a parking area.

With the use of a camera, the project avoids

the costly inductive sensors and the high

maintenance that comes along with them.

 The system will collect data on parking spot

occupancy in the parking area as well as

5

collect data on vehicles that will be entering

and exiting a parking area. The system needs

to be portable and be able to be placed in

remote locations where there is no power

source available. The system will include a

GUI to allow the user to access and analyze

the data collected. The camera connection

method will allow the use to locate the camera

in the position most convenient to them as

long they have the right angle for the video.

Professor Khan informed the team of the

proprietary nature of the data collected using

other companies’ equipment. The user does

not have access to the data collected since the

company analyzes the data themselves. Our

system will allow the user to analyze the data

collected themselves and can see the true

colors of the traffic behavior. This access will

allow the professional a better understanding

of the traffic in the area.

C. Benefits

Our system is veered towards helping

professionals solve the “parking problem” at

Sacramento State. By helping solve the

“parking problem” we are also helping the

students affected by terrible parking situations.

Professionals can do their job more efficiently

and a student will have a much easier time

finding parking.

The professionals that use our system will

gain a much better understanding of the traffic

behavior in certain parking areas. The

system’s database will be accessible via a GUI

and the user is able to analyze the data they

wish to analyze. Unlike companies that treat

their data in a proprietary manner, with our

system, the user will have full access to the

data and can analyze it in any way they wish.

Our consultant informed us that companies

charge them for the use of their system and

then charge them again for analyzing the data

collected, and the user never has access to the

raw data itself. Our system would offer a

lower price option, making it more accessible

to the user. This would in turn encourage the

user to tackle the “parking problem” more

willingly and could help solve the issue faster.

The accessibility would also encourage

starting engineers to tackle the “parking

problem” and offer a wider array of possible

solutions. This would benefit both young

entrepreneurs and students affected by the

parking problem.

III. DESIGN IDEA

A. Resources

Initially, the team assumed that since our

project is mostly software related there are not

a lot of parts needed for a physical build of the

system. However, as the team began working,

it became apparent, through trial and error,

that there would need to be changes to the

parts needed to complete the design. The team

first started with a Raspberry Pi board with a

Raspberry Pi camera. The system needed a

lightweight but powerful processing unit and

ARM based processors fit our requirements.

The reason our team used an ARM based unit

was because it functions well as a small

portable processor which can operate at low

power. It functioned as the central processor of

the system, computing all the processes in our

design. Through training various models our

system used machine vision to process the

video feed. Running detection models with

these components proved to be insufficient, as

the computational power of the Raspberry Pi

was not fast enough to keep up with the needs

of the program. The team decided on using the

NVIDIA Jetson Nano development board to

run the detection model. The Jetson Nano has

a much more powerful GPU.

6

Table I.

Nano vs RPi 3 B+ [2]

 Jetson Nano RPi 3 B+

Processor Cortex-A57 Cortex-A53

CPU Cores 4 4

CPU Speed 1.43 GHz 1.4 GHz

RAM 4GB

LPDDR4

1GB

LPDDR2

GPU Maxwell VideoCore4

GPU Cores 128 12

GPU Speed 921 MHz 400 MHz

Theoretical Peak

Performance

247.216

GFLOPS

24.8

GFLOPS

Package PWR 20 Watts 12.5 Watts

Dimensions (mm) 100x80x29 85x56x17

Cost $99 $50

As you can see in the table above, the Jetson

Nano outperforms the Raspberry Pi 3 B+

given similar power design. Both

microprocessors have 4 cores and clocked at

around 1.4 GHz. The big advantage of the

Jetson Nano is the 4 GB of ram and dedicated

128-core Maxwell graphics processing unit.

The Raspberry Pi does not have a dedicated

graphics processing unit. Because of this, the

Jetson Nano outperforms the Raspberry Pi in

floating point performance by 10-times!

Again, all within a small package power of 20

watts. Another advantage of the Jetson Nano is

to use the default power saving mode which

brings the package power down to just 5 watts.

This brings down the core clocks speed of the

CPU from 1.479 GHz to .918 GHz, and the

GPU from .9216 GHz to .640 GHz. [2] But

even with this slight decrease in performance,

the Jetson Nano can still outperform the

Raspberry Pi by about 8-times.

The team also became aware of the risk of

over-heating the board. Image recognition, and

thus image processing requires a lot of

computational power, which in turn develops a

lot of heat. Therefore, the team needed to

consider a way to physically cool the system

when it is operating. A cooling fan was added

to the physical build of the design in order to

address this. When we built the laboratory

prototype, we purchase a chassis and it came

with a no-name/no-brand 5V 40x40mm

generic fan. The performance of this fan was

suitable for our needs, but we decided to

replace the fan with a Noctua NF-A4x20

PWM 5V 40x40mm PWM fan. This fan was

exceptional and gave us 5.5366 CFMs of

airflow at 5000 RPM with an acoustical noise

level of 14.9 db(A).

Initially, our team was also contempt with

using a Raspberry Pi Camera V2. After testing

in our laboratory prototype, we found that this

camera was insufficient. The length of the

ribbon cable also made it difficult to maneuver

the camera around if we wanted to place it in a

desired angle. This was changed to a USB

camera. The advantage of switching to a USB

camera is not only the quality of the sensor,

but the fact that the camera is able to attach

and detach with a single USB cable. This

allows us to extend the camera to a desired

length and mount that camera onto a stand

which we can position it in any way we want.

With the larger sensor size and the wider

viewing angle, we can get the maximum

performance in barely lit environments and see

wider areas compared to the RPi Camera.

Table II.

USB Camera vs RPi Cam V2 [3]

 USB Camera RPi Cam V2

Sensor CMOS

OV2710

Sony Exmor

IMX219

Sensor size 1/2.7” 1/4”

MegaPixel Size 2 8

Max Resolution 1080p 4K

Max Framerate 30@1080p

60@720p

100@480p

15@4K

30@1080p

60@720p

Focal Length 1.56mm 3.04mm

Viewing Angle 170 degrees 62.2 degrees

Connector USB 2.0 CSI

Price $50.99 $27.50

7

For hardware resources, the team acquired:

the NVIDIA Jetson Nano, the Noctua cooling

fan, the components for a power bank, the

charger for the power bank, the USB camera,

the flash drive, the laptop, the 3D printed

enclosure, and other miscellaneous materials

needed for developing to complete the project.

The acquisition of these units, combined, cost

around $400.

 Python is the language the team utilized for

the car counting program and car occupancy of

a parking spot program. The advantage of

Python is the implementation between the

program and the hardware. When

communicating to hardware components,

Python libraries allow us to easily request

from device drivers. Python also has necessary

libraries to accomplish our features. Python

allows us to use TensorFlow in tandem with

OpenCV. These software libraries ran

seamlessly in our operating system

environment for the NVIDIA Jetson Nano.

More details of the software implementation

can be found in subsection C. MySQL was

used for our database and a GUI was

developed to allow for the upload and display

of data collected by the system. The GUI was

developed with Python and SQL.

B. Feature Set

There are five essential features our system

will adhere to in order to provide a more cost-

effective method to solve the “parking

problem” at Sacramento State. The first feature

is the ability to detect and classify motorized

vehicles. The knowledge of the type of vehicle

entering a parking area can help predict if

students might be carpooling and/or the

demographics of students attending the

University. The next feature is the ability to

distinguish occupancy of a single standard car

parking space. By collecting this information,

it is possible analyze the behavior of certain

parking spots; will the spot be occupied at a

certain time during a certain day? The next

feature requires the system count vehicular

traffic. Keeping track of the vehicles entering

and exiting a parking area provides insight on

traffic flow. Another feature requirement is the

system will include a power bank for

portability. It is important for the system to be

able to be used in remote areas that don’t

provide power sources. The final feature is the

system’s database will be accessible via a

GUI. The GUI will allow the user to access all

the parking data that has been collected.

C. Identification

The ability to identify vehicles is a crucial

part of our system. There is a plethora of

vehicles in a parking area at any given time.

Knowing what kind of vehicle is present can

provide a great amount of insight to the

community. Parking areas at Sacramento State

offer regular size parking spots, compact

parking spots, very few motorcycle parking

spots, and parking area for busses transporting

students.

If a parking area experiences a larger

amount of trucks to cars, then there would be

no need to provide compact parking spaces. Or

perhaps there is a deficit of parking spots in

comparison to the amount of motorcycles

arriving on campus. The information could be

used to create targeted parking areas and

possibly improve the flow of traffic by

eliminating the uncertainty of where to park.

We chose to utilize machine vision in our

project as we want to simplify the number of

external sensors in our project. Machine vision

allows us to utilize image data and run it

through a computer neural network to obtain

necessary parameters for the application of our

project. Neural networks consist of an artificial

network inspired by the 2 human brain which

allow the computer to learn and fine tune itself

based on analyzing new data [4].

The projects machine vision portion uses a

pretrained model optimized for object

detection. The model used in our project is the

8

SSD Mobile Net Version 2 pretrained with the

COCO large dataset. This model uses the SSD

algorithm which stands for Single Shot

Detector. SSD runs a convolutional network

on the input images once and then calculates

the feature map [5]. Then a small 3x3 sized

convolutional kernel is ran on the feature map

to predict the bounding boxes.

The team chose the Nvidia Jetson Nano

development board as it runs a powerful quad-

core ARM A57 microprocessor with a 128-

core Maxwell GPU all on a 5-watt power

design. Our 2-megapixel USB camera a

CMOS OV2710 sensor with a sensor size of

1/2.7”. These components run a special Linux

Ubuntu operating system environment for

ARM processors. The operating system is

provided by Nvidia. As for the framework, the

applications are written on Python 2.7. The

machine vision portion of the application

utilizes Tensorflow-GPU 1.14.0 and OpenCV-

Python 4.1.2.30. The components used for the

development of the program is an Intel Core

i7-9700k, 16 GB DDR4 ram, and a Pascal

based GPU: Nvidia GTX 1080 ti.

Tensorflow is the framework for our

machine vision program. Tensorflow provides

a dataflow graph or computational graph for

the manipulation of data. It is used to create

mathematical symbols in the form of Tensors

useful for machine learning. OpenCV is a

library of programming functions used 3 for

real time computer vision. It incorporates

features to do all operations related to images.

These libraries worked in tandem with Python.

If it weren’t for libraries like these, creating

functions that operate with IO, in this case our

camera, would have made the project more

difficult and time consuming. These libraries

accelerated the programming for the parking

detection and car counting applications.

Figure 2: Example of a convolutional neural net, LeNet-5 [6]

9

D. Occupancy

The goal of the parking detection feature is

to detect if an individual parking spot was

occupied and keep track of the duration of the

parked car. This would have to work for

multiple parking spots with multiple cars in

the frame of the camera. The punch list of the

project stated that at least 4 parking spots are

to be monitored. These individual spots would

have separate data written into a single

database file. This data file would be moved

onto a flash drive and transferred to a

computer with the database reading program to

be analyzed by the user.

Figure 3: Multiple parking detection program

[7]

The parking application was written in

Python. The program would first have to use

the machine vision element to detect a

motorized vehicle. When the machine is

confident enough and meets the confidence,

levels set by the programmer, the data of the

detected vehicle would be stored in four

separate arrays: bounding boxes, confidence

levels (or scores), object classes, and number

of detections in frame. The first dimension of

each array accounts to one detected object. To

obtain the parking of a single parked vehicle,

the program checks the first dimension of the

scores array and keeps a copy of the index if

the machine vision is confident that the object

being detected is a motorized vehicle. With the

saved index number, the program then checks

the bounding boxes array and grabs the

coordinates of the detected object. A simple

algorithm gets the center of the bounding box

of the detected object and draws a small circle.

If that circle is within the imaginary parking

spot, the program runs a counter and counts to

15 frames. If the detected vehicle is still within

parking spot after 15 frames, the program

counts the detected object as parked. At this

point, the program grabs the system time as its

start time. When the detected object leaves

parking space, another counter buffers till 30

frames has passed. The program again reads

the system time and outputs it as the leave

time for the detected vehicle. Finally, the

program writes this data onto a plain text file

on a flash drive. The flash drive can be

removed to transfer the data to our database.

E. Car Counting

A punch list feature of our project is to have

the system count motorized vehicles entering

and exiting parking areas. If a car enters a

parking area, a variable is incremented

representing an integer count of the total cars

in that parking area. The opposite is done

when a car leaves the parking. This is done

with a separate Python application that utilizes

the same machine vision algorithm that is used

in the parking detection application. An

imaginary line is created at the desired area

instead of an imaginary parking spot. If the

program sees that the detected vehicle is on

one side of the line, a counter increments up to

5 frames. After 5 frames, if the same detected

vehicle crosses the imaginary line, the

program will count that as a vehicle entering

or exiting a parking area. This is represented

by an integer number on the screen. It will

then increment a car count value and write to a

text file.

The program runs on the NVIDIA Jetson

Nano using the SSD MobileNet v2 neural net

to run image classification. It uses the same

dependencies to run the program and the initial

base code of the parking program as the

framework for the logic.

10

Figure 4: Prototype car counting program [8]

F. Power

The system requires a power source that is

easily portable, so our solution was a

rechargeable battery pack. We employed

twelve Samsung 25R 18650 batteries; each

cell had a nominal voltage of 3.6 v and a

nominal capacity of 2500 mAh [9]. So, to

reach a desirable voltage and capacity, 2 cells

were soldered in series and 6 cells were

soldered in 2 parallel; this configuration allows

for a nominal voltage of 7.2 v and a nominal

capacity of 15000 hours. These 18650

batteries are rechargeable lithium ion cells.

The team chose to use these cells because they

have superior capacity and discharge rates.

They offer 300-500 charge and discharge

cycles before the cells deteriorate too much.

These are the cells that are many times used in

laptops.

Figure 5: Power Bank [10]

Nickel strips were used to solder the 18650

cells together. Nickel has a low relative

resistance which means low heat and low

energy wasted. A BMS board is used to

protect the cells when they are being charged

and discharged. The BMS has a cut off voltage

of 2.5 v ± 0.7 v and works through passive

balancing; burning off excess power as heat

through the resistors mounted on the BMS

board. The charge balancing begins when the

safe voltage threshold of 4.2 v ± 0.025 v is

reached for either cell.

The power bank has a voltage regulator and

a voltmeter whose voltage requirements line

up with the cut off voltage of the BMS. And, a

female barrel DC jack for charging. Our

system operates at 5 watts of power; tests

proved the power bank can successfully power

the system for 14 hours, easily surpassing the

10 hours required by the feature set. The

power bank is also highly portable and allows

the system to be highly portable as well.

11

Figure 6: Power Bank Switches [10]

G. Database and GUI

The GUI feature is used to interface with a

MySQL database. It was developed in Python

using the tkinter library. To transfer data

through the GUI, the user must take the flash

drive from the microprocessor, after it

transfers the data into a text file, and plug it

into a computer that has the GUI program.

Upon startup of the program it has button that

will transfer the data to the MySQL database.

In order to accomplish this, the

mysqlconnector library is used. This library

allows the program to connect with a MySQL

database. It also allows the program to interact

and manage the database using SQL code. The

mysqlconnector library was essential in

developing the GUI as its function is to

transfer data to and from the MySQL database.

MySQL is a relational database, which means

it is a database structured to recognize

relations among stored items of information.

Figure 7: Database [11]

The MySQL database has a table that stores

the parking data. It has 8 columns of data to

store for every entry. The “EntryID” column is

an integer type value and is the primary key. In

a relational database model, every entry should

have a unique value in which to differentiate

itself to prevent insertion anomalies, like

inserting the same data multiple times. The

“EntryID” column must have a unique integer

value to differentiate all the entries from each

other. The “Spot” column is an integer type

value. It describes what spot a vehicle parked

in. The “Entry Time” column is a time type

value. The time type allows the database to

store time-based values. It is formatted as,

“HH:MM:SS”. This column stores data on

what time a person entered a spot and parked

their vehicle. The “Exit Time” column is also

a time type value. It stores data on what time

the person who parked their vehicle moves and

leaves their spot. The “Veh Type” column is a

variable length string type value. It stores

information on the categorized vehicle that

was parked. The “Count” column is an integer

type value. It stores information on how many

vehicles have been parked in a spot. The

“Session#” column is an integer type value. It

stores the session the system is running on.

Every time the system begins collecting data

and then finishes and writes to the flash drive,

it increments the session. Finally, the “Park

Duration” column is a time type value. The

“Park Duration” column displays an entry’s

difference between the “Entry Time” and “Exit

Time”. Essentially, it shows how long a

vehicle was parked.

The database also has a second table to store

data aggregated by the car counting program.

It has 6 columns of data to store for every

entry as seen in Figure 7 [11]. Most of the

columns are similar to the parking data table.

Just like the parking data table, it has an

integer primary key, “ID”. The “Enter/Exit”

column denotes whether or not a vehicle has

entered or exited a user defined area in the car

count program. This column is a variable

12

length string type. The “Time Stamp” column

denotes the time an entry has either entered or

exited the user defined area. It is of type time.

The “Veh Type” column denotes the type of

vehicle recognized when it entered or exited

the user defined area. It is also of type variable

string length. The “Count” column denotes the

amount of vehicles that have been counted for

entered vehicles or exited vehicles. This value

resets upon a new session start of the car count

program. It is of type integer. The “Session”

column denotes a data collection period of the

car count program. It is of type integer.

The GUI also allows the user to look up

specific information in the database. Using

SQL code, the database can be queried in a

variety of ways without the user knowing

SQL. With a push of a button, the database

entries can be filtered to show only entries of a

particular vehicle type, entries that have

parked in a specific spot, entries that have

parked in a particular time range, and entries

logged for a particular session.

Figure 8: GUI [11]

H. Integration

All of the individual features come together

to form the completed project. The project’s

machine vision portion uses COCO, a

pretrained model optimized for object

detection. The camera feeds the

microprocessor image data and a program

interprets that data via an algorithm to

accomplish object detection and object

classification. For software integration, the

data obtained had to be carefully organized

from the parking detector application before it

was outputted onto the database file.

The microprocessor stores the data on a

flash drive in a text file. The flash drive is then

plugged into a computer that has the GUI

program and MySQL database. The database

uses 2 tables to store data collected from our

microprocessor and stored to a flash drive. It

has 8 columns of data for the parking program

and 6 columns of data for the car counting

program. The “EntryID” column is an integer

type value and is the primary key that uniquely

defines their respective row of entry. The GUI

allows the user to manipulate and transfer data

with the MySQL database without knowing

SQL. It can filter the database to show only a

particular vehicle type, spot, or time range.

Not every location will have a power source

within reach. Our power bank is necessary for

those remote sites. In order to collect enough

relevant data, the system needs to be able to

operate for hours on end. The power bank

provides at least 10 hours of power. The power

bank also contributes to the system’s

portability, giving the user the ability to move

the system from one location to another

without the need to shut it off and relatively

low effort.

Our project aims to collect and provide

parking statistics to professionals in the traffic

management field. These professionals can use

this data to solve the issue of traffic congestion

caused by limited parking. Our system will

provide this data by using machine vision

running on an NVIDIA Jetson Nano

microprocessor powered by an external battery

pack.

IV. FUNDING

All of the components needed for the project

were purchased by the team members. Each

team member purchased the components that

13

were necessary for their respective part in the

overall project. The total dollar amount spent

on the project was $536.00. This was well

below our budget of $1000. Michael spent

$176.50 on the project, Sergio spent $159.50

on the project, and Ryan spent $200. Our

spending for the project was relatively equal in

dollar amount.

If we were to add the cost of the parts used

in the deployable prototype, the cost would be

$334.50. These parts include the NVIDIA

Jetson Nano, Noctua fan, SD card, batteries,

electrical components, 3D printed parts, and

other miscellaneous parts to complete the

device. Table 1 below will list the team’s

expenses.

Most of our spending was during our first

phase of the project year. We experimented

with what we thought our project needed while

keeping in mind of completing the laboratory

prototype. You can see in the table that we

purchased some toy cars. Although not vital

for the completion of the project, this helped

us making a controlled environment to test our

features with. It wasn’t until the second phase

of the project year where we started to

purchase necessary parts for the device itself.

Around this time was when we decided to

purchase the USB camera to switch over from

the Raspberry Pi Camera. We also bought a

second NVIDIA Jetson Nano for Ryan and

Michael to do software development

separately. We also bought this just in case we

fried the first Jetson Nano as a safety measure.

14

Table III.

Expenses [12]

Item Quantity Price per unit Purchaser

Raspberry Pi 3 B+ 1 $35.00 Michael

Raspberry Pi Camera

V2

1 $27.50 Michael

Noctua NF-A4x20

PWM V2

1 $15.00 Michael

NVIDIA Jetson Nano 2 $100.00 Ryan

NVIDIA Jetson Nano

Case Holder w/ Fan

1 $15.00 Michael

SD Card for Jetson

Nano

2 $10.00 Michael

Samsung 25R 18650

Rechargeable

Batteries

12 $4.00 Sergio

USB Camera 1 $50.00 Michael

3D Printed Parts for

the enclosure

1 $45.00 Sergio

LM2596 1 $12.00 Sergio

DC Voltmeter 1 $13.00 Sergio

2S BMS 1 $11.50 Sergio

Misc Parts

(wires, tape, etc.)

n/a $30.00 Sergio

Toy Car 1 $4.00 Michael

Toy Bus 1 $3.00 Michael

Toy Truck 1 $4.00 Michael

Toy Motorcycle 1 $3.00 Michael

 $536.00 Total Cost

15

V. PROJECT MILESTONES

Throughout the two semesters, the team

spent many hours working hard on our system

that collects parking data using machine

vision. We hit many milestones showing the

progression of the project and completing

these milestones helped encourage the team to

reach the next milestone in order to meet the

feature set’s measurable metrics. The

following section describes the project

milestones achieved by the team that lead to

the completion of the deployable prototype.

Each paragraph describes a milestone and the

impact on the project’s development.

 The first milestone was the agreement on a

societal problem the team would work to

solve. The team was assigned to seek out and

study a societal issue on their own. At this

moment we decided what we would dedicate

our efforts towards for the next year. We

resonated with the “parking problem” at

Sacramento State and decided to find a way to

solve this problem. This was the beginning of

our brainstorming and research into a concrete

solution the team can implement and design.

The next milestone was the forming and

establishment of the design idea. It was at this

moment that we established our sandbox and

set the goal we were aiming for. The team

wanted to create a system that would use

machine vision to collect parking data in order

to help solve our societal problem. Initially,

the team also wanted to implement a parking

guidance system that provided information on

which spots were open and where to park.

However, after consulting with Professor Tatro

and researching more into the parking

problem, and traffic congestion management

in general, it became clear that simply telling

drivers of open spots would cause problems.

On Professor Tatro’s referral, the team met

with Professor Ghazan Khan, a Civil

Engineering faculty member here at

Sacramento State. Professor Khan informed

the team that the main focus of the project

should be on data collection of parking

statistics using machine vision. After various

revisions of our feature set the team finally

created an adequate punch list of features and

measurable metrics. With the design idea and

punch list of features in focus, the team began

researching the resources and parts needed to

bring our solution to the parking problem into

fruition. The team decided to use a

classification model running on a

microprocessor, a camera, and a power bank to

collect parking data statistics and store the

information onto a database. The team finally

had a clear vision of the project. And then the

time finally came to begin working on the lab

prototype.

 As the team worked toward assembling a

functioning lab prototype, the necessary

components began to get completed. One of

the first milestones, in terms of the project’s

concrete development, was the training and

integration of the toy-scale classification

model. We trained a classification model to

detect and classifies toy-scale models of

vehicles. The model was able to successfully

identify scaled down models of vehicles. The

lab prototype consisted of model cars, and the

system operated successfully in good lighting.

We later discovered the camera we were

originally using had a low resolution, so a new

camera fixed the issue. The data collection

programs can now be used to collect data.

 After the achieving the previous milestone,

we were able to implement a car counting

program and a spot occupancy monitoring

program to collect statistics on parking spots

on the microprocessor. The car counting

program would count vehicles that have

entered and exited a bounding box and collect

the time and vehicle type. The parking spot

monitoring program would monitor a parking

spot and collect the time a vehicle would enter

the spot, when it left, and what type of vehicle

it was. These programs would write to a text

file stored on a flash drive which would be

used to store data onto a database on another

computer.

16

The next milestone was the assembly of the

power bank and its functionality when

integrated with the development board. The

power bank was able to successfully power the

system. Various modifications were made to

make the power bank look cleaner and power

the system more reliably.

 The team completed a GUI that displayed

the data collected from the system and was

able to store the data into a MySQL database.

The GUI was rudimentary, and it was not easy

on the eyes when it came to display the data,

but it displayed everything collected in the

database that was collected from the system.

 Our laboratory prototype was nearly

complete, but not entirely. We presented the

laboratory prototype to Professor Tatro and he

informed us the system was not fully there.

We had presented a mostly complete

laboratory prototype through video but

because we were not prepared to do a live

demonstration, it showed we were not up to

speed. Fortunately, Professor Tatro let us into

the next semester with a provisional pass; we

had to prove our laboratory prototype again

the first week of the next semester. We were

able to fix these issues before the showcase

and Professor Tatro received an email from

Schilling Robotics complementing our project.

Figure 9: Laboratory Prototype [13]

The next milestone for our project was fully

demonstrating our laboratory prototype for

Professor Tatro. The team demonstrated the

system capturing data on a toy-scale parking

lot with toy cars with the parking monitoring

program. The data collected was then

transferred from a flash drive attached to the

developer board and plugged into a laptop that

ran a GUI to transfer the data to the database at

the click of a button. At this point, the project

has achieved the completion of a laboratory

prototype.

 It’s the beginning of a new semester and the

team has revised the societal problem.

Throughout the previous semester and thanks

to consulting with a professional we gained a

better understanding of our societal problem.

We learned we couldn’t directly solve the

problem, but we could offer the foundation for

solving the problem. This milestone only

solidified our team’s understanding of the

societal problem and reassured us that our

project’s feature set was properly in place to

address the societal problem.

 By utilizing the common objects in context

(COCO) dataset, we were able to use our

system on full-scale vehicles. We finally

moved out of the lab and into the real world.

We began tests of live footage using our cars

and found the new camera was an incredible

addition. The system now worked with real

vehicles, an important milestone to accomplish

as the team can now collect data with the car

counting program and spot monitoring

program.

The next milestone was the upgrade to the

car counting and parking spot monitoring

program. In the laboratory prototype build,

only 1 spot could be monitored in the parking

spot monitoring program. For the deployable

prototype build of the parking spot monitoring

program, it can monitor up to 4 spots. The car

counting program was updated to keep track of

which session the program is running on.

Achieving this milestone meant that our

17

system’s collected data can now be

transferred.

 The GUI was upgraded, and it now allowed

for filtering of the data collected and stored in

the database. The parking data could be

filtered by time range, vehicle type, parking

spot, and session. The display of the data was

also changed for better readability.

 There were many delays to the enclosure

due to constant failure of 3D printers and then

the stay-at-home order announced by the state

during the project’s development. But the

enclosure was finally completed, and all the

components were combined to create our

deployable prototype. With the enclosure done

we were also able to finish our testing.

Figure 10: Enclosure [14]

 We made a video presentation for our

deployable prototype mid-term progress

review and sent it in to Professor Tatro. Our

presentation fulfilled most of the feature set

requirements, but our team was informed that

our demonstration was missing the

classification of a bus, truck, and motorcycle;

the demonstration only showed cars. None of

the team members owned a motorcycle, bus,

or truck so the team had to go out and search

for some to use in the deployable prototype

review. This proved difficult due to the state

issued stay-at-home order, but we were able to

find each vehicle to demonstrate the

classification of buses, motorcycles, and

trucks. The team sent the video presentation

with the new footage showing the

classification of a bus, motorcycle, and truck

to Professor Tatro and fulfilled the remaining

requirement of our project aside from the end

of project documentation.

 With all the milestones outlined in this

section achieved, the team has finally

completed the physical aspect of the

deployable prototype. Despite the shaky start

the team met all the features on the feature set.

The completion of the deployable prototype

was the culmination of accomplishing the

many milestones listed in this section.

VI. WORK BREAKDOWN STRUCTURE

Once the team decided on the societal

problem to address and the design idea

contract was established, tasks were assigned

to each member that best suit their respective

backgrounds and skills. The work breakdown

structure is intended to portray the division of

work amongst the team in order to complete

the deployable prototype.

18

Table IV.

Project Schedule, Milestones and Assignments [15]

Features & Assignments Task Time Frame Team

Member(s)

Assigned

Car Recognition

A. Machine Learning

(Detection Model)

A.1 Research

A.2 Training

A.3 Implementation

A.4 Optimization

10/14/2019 – 11/10/2019 Michael/Ryan

A. Car Counting Method B.1 Lab Prototype

Program

B.2 Implementation

11/4/2019 – 11/13/2019 Michael/Ryan

B. Car Occupancy

Detector

C.1 Lab Prototype

Program

C.2 Implementation

11/11/2019 – 11/22/2019 Michael

C. Scaling D.1 Scale detection

model to real vehicles

D.2 Scale car counting

software

D.3 Scale car occupancy

detector software

1/27/2020 – 3/20/2020 Michael/Ryan

Display Software

A. Database backend A.1 Database Type

A.2 MySQL database

setup

A.3 Lab Prototype GUI

11/4/2019 - 1/23/2020 Ryan

B. GUI frontend B.1 Auto-copy data file

from USB

B.3 Display data from

database

B.4 Filter database

entries

1/27/2020 – 3/20/2020 Ryan

System Hardware

A. Camera A.1 Hardware

Implementation

A.2 Software Drivers

10/22/2019 – 10/22/2019 Michael/Ryan

B. Network B.1 Network Driver

B.2 Remote desktop

connection

2/17/2020 – 2/23/2020 Michael

C. Power Bank C.1 Design

C.2 Construction

C.3 Integration

10/22/2019 – 11/6/2019 Sergio

19

Features & Assignments Task Time Frame Team

Member(s)

Assigned

D. Power Bank

Optimization

D.1 Testing

D.2 Improvement

D.3 Integration with

hardware enclosure

1/27/2020 – 3/20/2020 Sergio

Physical Hardware

A. 3D Enclosure Design A.1 Outward enclosure

design

A.2 Inward mounting

mechanism

A.3 Frame mounting

1/27/2020 - 2/24/2020 Sergio

B. Enclosure Printing B.1 Evaluation of 3D

design

B.2 Optimization

B.3 Printing

1/27/2020 - 2/24/2020 Sergio/Michael

Course Assignments

1. Problem Statement 9/2/2019 – 9/23/2019 All

2. Design Idea 9/23/2019 – 10/7/2019 All

3. Work Breakdown

Structure

 10/7/2019 – 10/21/2019 All

4. Project Timeline 10/21/2019 – 10/28/2019 All

5. Risk Assessment 10/28/2019 – 11/4/2019 All

C. Technical Review 11/18/2019 – 12/2/2019 All

D. Revised Problem

Statement

 1/20/2020 – 1/27/2020 All

E. Device Test Plan 1/27/2020 – 2/3/2020 All

F. Market Review 2/3/2020 – 2/24/2020 All

G. Feature Presentation 2/24/2020 – 3/2/2020 All

20

Features & Assignments Task Time Frame Team

Member(s)

Assigned

H. Deployable Prototype 1/27/2020 - 2/24/2020 All

I. Midterm Progress

Review

 3/2 – 3/23/2020 All

J. Deployable Prototype

Review

 3/23 – 4/20/2020 All

Table V.

Work Breakdown Tallied Hours [15]

Feature/Task Ryan Michael Sergio Total Hours

on

Feature/Task

Problem

Statement

11.5 13 14.5 39

Design Idea 15 17.5 19 51.5

Work

Breakdown

Structure

16 14 18.5 48

Project

Timeline

14 15 18 47

Risk

Assessment

16 9 5 30

Power Bank 0 0 43 43

Train &

Integrate Toy-

Scale Classifier

10 55 6 72

Lab Prototype

Spot Detection

5 22 0 27

Lab Prototype

Car Counter

5 11 0 16

21

Feature/Task Ryan Michael Sergio Total Hours

on

Feature/Task

Lab Prototype

GUI &

Database

44 0 0 44

Technical

Review

2 3 2 7

Revised

Problem

Statement

8 7 5 20

Device Test

Plan

9.5 4 9 22.5

Integrate Full-

Scale Classifier

0 12 0 12

Market Review 13 9 9.5 31.5

Deployable

Prototype Spot

Detection

14 29 5 44

Deployable

Prototype Car

Count

7 12 2 21

Deployable

Prototype GUI

& Database

47 0 0 47

Enclosure 0 22 42 64

Feature

Presentation

13 11 6 40

Deployable

Prototype

Presentation &

Documentation

40 40 60 140

Total Hours 290 305.5 264.5 860

22

VII. RISK ASSESSMENT

The process of developing a portable system that

extracts traffic data from video footage, specifically

in regards to parking statistics, is wrought with

many risks, especially for a team of computer

engineering and electrical engineering

undergraduate students with little to no background

experience in the field of traffic data collection and

image recognition. With minimal collective

experience amongst the development team,

identifying and mitigating the potential events and

risks that may hinder the completion of the project

can be difficult. However, amongst the planned

system’s features, the team has identified the

project’s most significant critical path to be the

development of the image recognition. Thus, the

development needs of the project’s image

recognition feature will be priority and the

development process of the feature will be closely

reviewed for foreseeable risks, which will be further

explained later in this report. However, the biggest

risks to the image recognition feature will be those

which are unforeseeable due to our limited

knowledge of the technology. Unforeseeable risks

will become the primary focus of the team if they

manifest during the development of the image

recognition feature. The creation and execution of a

practical risk mitigation plan will have to occur as

soon as possible in order to allow for the

completion of the project. There are also risks

outside the development of the image recognition

feature, like potential mounting failures of the

system or limited testing due to an inability to

acquire permission to mount the system in the right

environment. This section will present and discuss

the potential risks associated with the development

of a portable system that extracts traffic data from

video footage, and possible mitigation strategies if

said risks do occur.

A. Critical Path Risk Mitigation

The critical paths of the project will revolve

around the development of the car recognition

feature; identifying and mitigating risks to this

feature will be crucial to the project. The car

recognition feature will use machine learning to

allow the system to categorize vehicles, monitor the

occupancy of parking spots in a parking garage, and

count vehicles that pass these spots. It goes without

saying, if this feature does not work the project will

be considered a failure. Thus, identifying and

mitigating risks which will hinder the development

of this project must be top priority. In context of the

research and work done by the team on this feature

so far, we have identified and even partially pre-

mitigated a few foreseeable risks had they came to

fruition.

One risk the team already confronted is the

potential inadequate processing power and memory

of one of our microprocessors. This is a risk to the

project’s development and even the critical path of

the project because if our processor cannot

adequately process video footage it will aggregate

inaccurate data which defeats the purpose of a

parking garage traffic data collection system.

Originally the team had been using a Raspberry Pi 3

as the microprocessor, but as the team tried to

implement a few basic image recognition programs,

it became apparent that the GPU and limited

memory lead to poor framerates and overall poor

performance. Thus, the team shopped around and

found another microprocessor, the NVIDIA Jetson

Nano, which has a GPU and enough memory to run

image recognition programs. The team was able to

transfer the libraries and programs onto the Jetson

Nano. As the team continued to develop and work

with the Jetson Nano, the risk of an inadequate

processor did not manifest.

Another risk the team may have encountered is

the overfitting of our machine learning model. One

of the risks of training a machine learning model is

developing a model that accurately recognizes the

data used to train it but is very inaccurate to new

data [16]. Another way of putting it is that machine

learning models wants to track a signal or pattern

amongst the hoard of data inputted but ignore any

noise that is irrelevant to recognizing a pattern of

the signal. If the model doesn’t ignore irrelevant

noise and includes it as a requirement to the pattern,

it is overfit to its training data. In general,

overfitting a model means it sees a pattern where

there is none; it doesn’t generalize well from

training data to unseen data and has developed

23

specific criteria irrelevant to recognizing the

pattern. Research done by the team has revealed

that overfitting is a common pitfall for beginners in

machine learning and is also relevant amongst

experienced developers. Overfitting is a potential

risk in the system as the model being trained may be

overfit to recognize cars from only certain angles.

Potential mitigation solutions would be to place the

system at a vantage point in which the overfitting to

specific angles is not a problem. Another overfitting

risk is that the pictures of cars the team will use to

train the model will cause the model to only

recognize the cars shown in the training data but not

any new car pictures. To mitigate this, models will

need to be saved in different states of their training.

By doing so, the model can be rolled back to a state

in which it was not overfit. Another strategy to

avoid overfitting is to use datasets available online

that are widely used to train image classifier

models. This strategy also offers a streamlined

development path by cutting out the process of

procuring and labeling a vast array of images.

Speaking of saving different states of the project,

the loss of the original code, erroneously or not, is a

risk with a potentially huge impact. Code being lost

with no way of recovery would be devastating to

the development of an image recognition feature. In

fact, it would probably kill the project outright. The

probability of this happening can be kept to a

minimum if there are copies and backups of the

code. To mitigate the risk of a team member

deleting or corrupting code, it would be best for

each team member to have their own personal copy

to safeguard against the potential malicious intent of

team members.

As mentioned in the introduction, unforeseeable

risks perhaps pose the biggest threat to the

development of the project’s critical path. Since the

team has beginner level experience with machine

learning and image recognition, there may be many

risks the team may not foresee but may become

apparent as the feature is being developed. Thus, in

order to mitigate these unforeseen risks, continuing

research on machine learning and image recognition

will be helpful, but the best way to mitigate

unforeseen risks and risks in general is to get ahead

of development schedule in a practical manner to

allow for more time to solve or seek help for issues

that may occur down the road. In regards to seeking

counsel, Professor Parham Phoulady was

recommended to us after reaching out to the

computer science department here at Sacramento

State University. Of course, Professor Phoulady’s

assistance should not be relied on, but it is

important to have the option to reach out to

someone if the project runs into an issue that cannot

be resolved by the limited knowledge of the team.

However, once again, reaching out and seeking

counsel is only an effective mitigation tool if it is

done early as there may not be a simple and quick

fix to an issue.

24

Figure 11: Risk Assessment Heatmap [17]

B. Risk Mitigation for Non-critical Path

There are many risks that are not directly related

to the critical path but are nonetheless a potential

hinderance if not mitigated for. From the system’s

mounting hardware to the testing environment of

the deployable prototype, there are many risks that

pose a threat to the project’s development.

A minor but potential risk to the project’s

development is if the GUI or database manifest a

bug or an error in the middle of development. This

risk can be properly mitigated through research on

SQL and Python. As well, there are plenty of

faculty members experienced with SQL and Python

if all else fails.

Before we talk about the risks of the hardware

itself, we need to mention the risk of obtaining

incompatible hardware. Let’s assess what can

actually be lost and how can we mitigate it. Since

the hardware at the laboratory prototype level is

non-critical, what we will lose is money and time.

Hardware like the heatsinks cost about $10 or less

and purchasing an incompatible heatsink will only

set our project estimated cost back by $10. System

hardware like Raspberry Pi camera or USB camera

are more expensive but is will in the range of

purchasing out of pocket if needed. These kinds of

parts can mostly be found on Amazon which does

provide fast shipping, so not much time is loss if we

work on other aspects of the project while we wait.

The risk of incompatible hardware can mostly be

mitigated by working around the problem by either

researching if we can purchase a compatible part or

disregard the purchased part altogether and work

around not having it.

Regarding the mounting hardware and encasing,

there are several risks involved. Initially, the team

did not know the dimensions nor weight of the

deployable prototype. The goal of the project is to

have a system that is portable and can be placed

25

inside a parking garage in order to collect data.

Ideally, the design would use minimally invasive

mounting strategies like suction or Velcro with

adhesive to attach itself to a surface. The problem

with this is that if the system turns out to be

decently massive, the risk of the system being

unable to stick to a surface would become highly

probable. Originally, the mitigation plan to address

this risk, is to research stronger mounting tools that

are not invasive but may need to include invasive

strategies in order to mount the system. This risk

eventually became a non-issue as the team decided

to have the enclosure be grounded for the most part

while the camera would be the only part of the

system suspended.

In light of mounting hardware, one of the biggest

risks to the project is the possibility of the system

falling off its mount and causing damage to the

system or even pedestrians. The most important and

expensive component currently used in the project

is the Jetson Nano development board, which was

about $100.00. While not ideal, the cost of this risk

would be minimal in this regard, and per the

previously mentioned mitigation strategy on

preventing loss of code, the software should be

backed up somewhere that can be reuploaded to

another Jetson Nano. Of course, there may be the

off chance that the microprocessor may break

before the team needs to demonstrate and another

one cannot be retrieved in time, so having a backup

would be ideal. However, the most dangerous risk

would be if damages are done to someone as a

result of the system falling. If this were to happen it

could be potentially very costly as anyone who is

victim to this could be compensated for special and

general damages. Special damages could range

from property damage as a result of the system

falling on a vehicle, to damages which would result

from medical services needed as a result of the

system falling on a person causing injury. General

damages would compensate the victim for

unquantifiable damages such as pain and suffering

[18]. Worst case scenario would be a wrongful

death case. The team does not have the budget to

compensate for a civil claim against us. The budget

for the project is only about $1,000.00, and about

$400.00 was already used. Ideally, to mitigate this

risk, the system would be put in place that if it were

to fall no damages would occur. However, the

system will need a vantage point with a minimally

obstructed and wide view. Some risk will need to be

accepted as camera angles would need to be in high

up places. Thus, it is imperative that the mounting

hardware be tested to stay up without any issues.

The best the team can do is only setup the system in

a lofty place if its fall would not cause damage to

pedestrians.

Another risk of the project would be overheating,

and heating damage caused to the system. Machine

learning, and image recognition requires a lot of

power to run. As a result, the system generates a lot

of heat that needs to be dissipated. The Jetson Nano

has heatsinked fins to help mitigate heat

development, but if the process is running for a long

time, that may not be enough. In fact, if it’s just too

hot outside, the system would be even more

susceptible to overheating. If the system overheats a

few things will happen. The image recognition

process will lose precision and will provide less

reliable results. As well, the Jetson Nano may end

up breaking due to overheating. In order to mitigate

these risks, including cooling components may be

necessary. The system may even have to be limited

to use during the temperate to cold seasons.

The procedures of testing the system in a suitable

environment may also run the team up against

harmful risks. One potential risk that would prove

problematic would be the denial of testing in the

Sacramento State parking garage. If the team is

denied permission, it would make testing and

developing the system very difficult as a similar

environment would have to be found that would

allow for testing. If this were to happen it would

slow the development process down needlessly. In

order to mitigate this risk, scouting the garages to

figure out where the system will be placed and

requesting permission early will be important in

order to figure out the requesting process.

C. Final Thoughts on Risks and Mitigations

When writing this risk assessment section, it was

important to focus on what is probable, but also

keep an open mind to what is possible and what

event would be the most damaging were it to

happen. Developing a portable system that uses

machine learning to extract data from video footage

is riddled with risks both foreseeable and

unforeseeable for students with little to no

26

experience. Figuring out the risks associated with

the critical path is the most important risk

assessment as a halt in the critical path halts the

entire project. The project’s most critical paths

revolve around the development of the machine

learning model to perform image recognition. If the

image recognition software or hardware were to

fail, then the whole project would fail. One potential

risk the team has already encountered is the lack of

processing power and/or memory, so we purchased

a new stronger processor, the NVIDIA Jetson Nano,

to mitigate this issue. Another risk the team may

come across is the system overfitting; meaning that

during the training process it may recognize

patterns and adapt them even if they are just noise

that isn’t necessary to our project. We will need to

make sure the program only learns what is required.

Another huge risk is the loss of our code altogether,

if that happens then absolutely all progress made

would be lost. In order to mitigate this risk, we will

create multiple copies of the source code and save it

in distinct locations. The most critical path of our

project is that the whole team has minimal

experience with machine learning meaning this

whole project we are learning as we work. We have

to stay one step ahead of the program in multiple

ways. Some of the non-critical risks include

compatible heatsinks for our system so that our

processor can continue working at its full potential

and not have negative effects on the results. We will

have to make sure we can create mounting hardware

and encasings that will not have detrimental effects

on our system. So, we will need to make sure we

can easily move our system from place to place and

easily accessible for maintenance. The mounting

hardware will have to be sturdy enough to hold the

system in elevated places and not fall onto vehicles

causing property damage or causing damage to the

place of installation. The enclosure will have to be

able to protect the system from weather and other

external factors; these may include rain, heat, or

wind, as well as, passing pedestrians who may be

inclined to make contact with the system. We may

also encounter an issue with the availability of

testing locations; our system seeks to collect data on

Sacramento State parking structures but if for some

reason permission were to be denied then we would

have to rescope and find new testing grounds. In

this report we discussed what we consider to be

critical risks and what we consider to be non-critical

risks, as well as how we will deal with these risks.

There are other risks such as monitor failure or low

battery capacity but those can be dealt with

extremely easily.

VIII. DESIGN PHILOSOPHY

The societal problem the team wanted to address

was the “parking problem” at Sacramento State.

The team wanted to offer a solution to thousands of

students that suffer from the headache that is

parking at Sacramento State during peak hours. It is

an issue we, as students, have also experienced.

During peak hours it can take up to 40 minutes to

find a parking spot because driver’s all flock to the

same location in hopes of finding an open spot. So,

we decided that our project would gather data to

help professionals create a solution for the “parking

problem.”

A. Data Collection

One of the major issues created by the “parking

problem” is traffic jams. Sacramento State

University only has two entrances that lead onto the

campus, and if all the driver’s entering campus

flock to the same parking area, well that greatly

reduces the flow of traffic. We wanted to create a

system that would lead drivers to open parking

spots but that introduced too much human error and

we have nearly no knowledge of traffic

management. Therefore, we decided our system will

collect good accurate parking data that professionals

could use to create a solution. They have the

knowledge of traffic management and the means of

creating a solution, our system will give them the

analytics they require to understand the problem. If

professionals can find a way to help students make

better choices when it comes to picking a parking

area, then the flow of traffic will greatly increase.

The Sacramento State admission rate is ever-

growing, meaning peak hours will also last longer.

Our system will keep track of how many cars are

entering and exiting a parking, as well as, how long

certain parking spots are occupied throughout the

day. This data can help predict the behavior of

drivers and provide insight on which parking areas

observe the largest influx of drivers looking for a

27

parking spot. With this knowledge a driver could

make a more educated guess at where they could

find an open parking spot. By eliminating the

guessing situation, drivers will head to a location

with purpose and this could improve the flow of

traffic.

By keeping track of the classification of vehicles

a professional can gain insight to the demographics

of a parking area. Is there a need for bigger parking

due to large trucks? Is there not enough parking

available for motorcycles? Are students carpooling

in larger vehicles? Is traffic affected by the busses

and shuttles transporting students? By taking these

factors into account then parking could become

vehicle specific or offer better accommodations for

certain vehicle types. Many times, when I’ve found

an open parking spot, I would have to keep

searching because my car didn’t fit in that location;

whether it be because the spot is for compact cars or

a wide truck was spilling into the next spot.

This data is important for understanding the

behaviors of the other drivers parking on campus.

For understanding the demographics of the parking

areas, what kind of vehicle is most likely to park

there. With this information, professionals can

create a solution for the “parking problem” at

Sacramento State.

B. Cost-Effective and Accessible

Current smart parking systems require a large

number of expensive components. The sensors

utilized by these systems are embedded into the

ground which makes maintenance a costly and

time-consuming process. We wanted our system to

be cost-effective and easily maintainable. The most

expensive single component on our system is the

development board processing the video feed. The

system uses a fairly inexpensive camera that is

connected via USB and allows for the user to mount

the camera through any method they wish. If they

so desired, they could even purchase a higher

resolution camera. Maintenance is also as simple as

unscrewing the enclosure and dissembling the parts

as necessary. The system also has a rechargeable

power bank which allows the user to operate in

remote locations where there is no power source.

The system is easily portable and gives the user a

wide range of mobility, they aren’t confined to only

areas that have power sources.

We wanted to make our system as accessible to

professionals as possible. Through our research and

consultation with Professor Khan we discovered the

products already on the market are extremely

expensive. And, the user is not given direct access

to the data they collected. They have to rely on the

company to process the footage for them, typically

offsite. Our system will offer transparency so that

the user can see all the data they gathered. This way

they will gain better insight to the parking situation.

There is information that only a professional can

truly understand. The system is easy to use only

requiring the user to enter a few lines of code to get

the system up and running. The GUI makes the data

collected extremely accessible since you can either

view all the data collected or set filters to only view

what is desired.

IX. DEPLOYABLE PROTOTYPE STATUS

As of April 20, 2020, the team has completed the

deployable prototype and fully met the intended

feature set. Thanks to the efforts of the team’s hard

work, a completed deployable prototype was finally

achieved. We will now discuss each feature and our

results.

A. Identification

The system is able to identify motor vehicles and

categorize motor vehicles at a parking area in

Sacramento State following the definition default

naming scheme of the COCO dataset for vehicle

classification. In order to meet this feature, the

system measures the accuracy of identifying motor

vehicles entering and exiting the structure. Through

testing, we will have an accuracy of 99% making 1

out of 100 cars misidentified. We will categorize

vehicles at the entrances and parking spots as either

a bus, a truck, a car, or a motorcycle with a

confidence level above 85%.

28

Figure 12: Bus identified [7]

Our midterm progress video demonstrated the

system accurately categorizing each type of vehicle

with the only mistake being one truck in the

background being identified as a car. But, Michael

fixed this issue and we were able to show a follow

up demo with a correctly categorized truck. One

misidentified vehicle is acceptable within our

feature set. The system has a threshold of 85%

confidence that won’t allow it to identify a vehicle

if under that level. The system was able to

accurately identify vehicles it considered about the

confidence level.

B. Occupancy

The next feature is the ability to distinguish

occupancy of a single standard car space at a

parking space in Sacramento State following the

Zoning Code Parking Regulation [19] for the city of

Sacramento. The tasks we set in order to meet this

feature are as follows: we will measure the accuracy

of distinguishing if a car occupies a single standard

parking space of 8.5 by 18 ft within one aisle of 4

car parking spots. We will ensure each occupied

parking spot with a confidence level of 94%. We

will keep track of the start time and end time

duration (in seconds) of a parked vehicle for each of

the 4 observed parking spots.

 Our demo video demonstrates these tasks being

accomplished. We took two vehicles and would

park them in different spots then relocate to other

parking spots and the system registered the

occupancy perfectly for each occasion. It kept track

of the time the spot became occupied and the time

the spot became unoccupied. The parking spot

occupancy was also proven using a motorcycle and

a truck. We weren’t able to perform this test with a

bus since no one in the team owned a bus.

Figure 13: Parked motorcycle [7]

C. Car Counting

Another feature is the counting of each identified

motor vehicle that comes in-and-out of the

entrances and exits of the parking area. This feature

requires the system keep an integer count of

vehicles that have entered and exited the parking

structure. The category of the vehicle will be

recorded with a confidence level of 85% (as

mentioned previously).

Our demo video again demonstrates this feature

being accomplished. Michael set thresholds in the

video feed that acted as the entrance and exit to a

parking area. The system detects and identifies a

vehicle and a little red dot follows the center of the

vehicle, when the red dot crosses either threshold

then the system will count it as entering or exiting

respectively. The entrance and exit thresholds can

be either set up as vertical lines or horizontal lines.

Figure 14: Horizontal thresholds [7]

29

Figure 15: Vertical thresholds [7]

D. Power

The next feature revolves around portability with

the use of battery power. It requires that the power

bank last at least 10 hours-worth of battery life. This

allows for system to be able to be used on remote

locations and collect enough data for analyzation.

The tests the team ran proved that the system can

provide reliable power to the system for at least 10

hours. Operating the system at 5 watts, the power

bank has a battery life of about 14 hours.

E. Database and GUI

The last feature our system met involves a

database that will record the data and the GUI that

displays the data collected. The database will have a

record of the integer count of cars being counted,

the car classifications, and the statistics of a specific

car occupying a spot. And, by using the GUI, we

can measure how long a car has occupied a space

within a certain period of time by the seconds. We

can also filter data entries by the different data

collection sessions.

Figure 16: Raw data [11]

The GUI allows access to the data collected in a

format that makes sense. The GUI also allows for

the filtering of the data so that the user can access

specific data. The GUI allows for filtering by hour

range, vehicle type, parking spot, and data

collecting session.

 Figure 17: GUI and data [11]

X. MARKETABILITY FORECAST

Determining the deployable prototype’s

marketability is a matter of examining the perceived

market audience, comparable services and products,

and perceived market value. Our perceived market

audience would be made up of organizations that

can use these statistics to provide transportation

construction projects and studies to better their local

transportation infrastructure. This would include the

individual involved in academia who wish to

develop studies on parking behavior. Using

machine vision to monitor parking spots, and

vehicular traffic in general, is not a new practice. In

fact, there are many companies that provide traffic

monitoring services far more advanced and polished

than what our own system is capable of. Companies

like Miovision, TrafficVision, and Pelco have

developed their own cameras, machine vision

software, database infrastructure, and data

forwarding platform neatly packaged for the

market. It should also be noted that machine vision

is not the only way to monitor parking spots.

Companies like Indect use cameras for machine

vision as well as ultrasonic sensors to monitor

parking spaces. Compared to our design, these

professionally developed products are far more

sophisticated and polished. However, one of the

features that makes our system stand out is the fact

that the video processing is done on site and is in

the hands of the user, unlike other companies who

30

process the video on their end and forward the

aggregated data to the user. Determining the value

of our system is also a bit ambiguous since similar

services’ prices are a case by case determination.

There’s the cost of the hardware, like the cameras

being used, but the price of the video processing is

variable. Since how much traffic being monitored

scales based off how many areas are being

monitored, the prices can vary widely. Even the

type of user determines the price tag of utilizing

these professionally made systems.

A. Perceived Market Audience

Cameras that monitor traffic on roads and

freeways are often maintained by state departments

of transportation. Along with monitoring the roads

for accidents or major closures, footage from traffic

cameras is influential in decisions regarding future

road development and construction. The same can

be said about monitoring parking spaces; data

collected on the statistics of parking spaces can

pave the way for improving roadways or parking

spaces.

Figure 18: The California Department of

Transportation Logo [20]

The California Department of Transportation

(Caltrans) is a perceivable market audience that can

benefit by the use of our system. Caltrans services

the California’s public transportation welfare.

According to their program for Traffic Operations,

Caltran’s aims to provide integrated and efficient

transportation systems. These systems are in the

forms of Integrated Corridor Management (ICM),

Intelligent Transportation Systems (ITS), and

Connected Corridors. This includes how freeways,

2 arterials, transit, and parking systems work

together by use of well-integrated communication

networks into transportation infrastructure. Caltrans

is currently testing the Connected Corridors project

in the I-210 of the Los Angeles Area [20]. Within

the corridor project, Caltrans must rely on good

monitoring systems to adequately cover needed

areas of freeways and major arterials. The pilot

project listed the following as critical data to be

characterized: traffic conditions of freeways and

arterials, parking availability, traffic monitoring

systems, information devices, traffic control

devices, and ICM system status. Caltrans states that

the ICM program should incorporate parking

information whenever possible. They intend to

provide real-time parking information to encourage

the use of parking facilities to use of public transit

and reduce the number of cars on the road. Very

few facilities have systems the count the occupancy

of vehicles which the project intends to integrate

more in the future. A system like ours can

potentially aid in collecting data needed to integrate

counting systems that can benefit facilities that need

them the most.

Another perceived market audience that can

benefit in our system are students and professors in

educational environments. Civil Engineering

students and professors need relevant useful data to

teach transportation engineering concepts. In order

for professors to obtain such data to be taught to the

students, one must purchase it from contractors or

obtain said data themselves. This can be an

expensive venture for purchasing data and time-

consuming task for non-experts in the field of

machine learning. For Civil Engineering students

and professors wanting to collect data themselves

would find it difficult to create such a device to

collect data if they do not have any programming or

machine learning background. This task would be

beyond their field of study and is best done by

experts that would normally be outsourced.

Depending on the volume of the project, contractors

that can collect data can charge up to $1800 for

complex classification. For statewide projects,

contractors can charge $120 per traffic count [21].

This does not include the needed equipment to

perform the data collection. Our system would

benefit with this audience as the cost would go only

to the equipment and software. The user would have

31

full control of the data which makes it marketable to

students and professors in large volumes.

B. Comparable Services and Products

As stated before, monitoring parking spaces, and

vehicular traffic in general, as a service has been

around for a while. In fact, there are entire

companies that specialize in providing these

services to municipalities all over the world.

Miovision, TrafficVision, Pelco, and Indect are just

a few companies to provide these services. These

well-established companies would absolutely quash

our team’s design, but our design has a few features

that stand out amongst these companies’ products.

Miovision is a traffic solution company that uses

artificial intelligence to help cities actively monitor

traffic to become smart cities. Their products track

pedestrians, cars, and bicyclists. They can

determine the travel time, road volume, intersection

count, and a whole slew of statics based off the

user’s request. They offer two methods of

monitoring vehicles. They can apply permanent

fixtures with their Miovision TrafficLink or their

portable device, Miovision Scout, that can be used

in remote areas. Their Miovision TrafficLink

service includes a SmartView 360 Camera and

SmartSense Hardware to interface with the camera

and forward the captured video to Miovision’s data

center to process the footage. These devices need to

be plugged into a main power source, so their

implementation relies on the infrastructure it is

placed in. The Miovision Scout is a portable device

that can be used in remote locations that do not have

the infrastructure to support the Miovision

TrafficLink hardware. The Scout hardware weighs

approximately 80lbs, has a battery life of 72 hours,

can store 355 hours of video, has LTE and Wi-Fi

capabilities to forward footage and monitor or

change studies, and a 5.5” backlit LCD display. It

can also operate in temperatures as low as -40° F

and as high as 140° F. Some of Miovision’s

accomplishments includes helping Detroit, MI to

modernize their dated infrastructure to monitor and

analyze traffic performance, provide traffic data to 3

Chicago, IL to help their city become more

bikefriendly, and optimized signal timing in the city

of Maricopa, AZ to help reduce traffic congestion

[22].

TrafficVision implements their machine vision

software onto existing camera infrastructure to

monitor and collect data on vehicular traffic. If

existing cameras use a standard digital encoding,

the video feed can be analyzed over their network.

TrafficVision software can operate on numerous

hardware platforms such as Cloud, commercial

offthe-shelf servers or robust equipment in the field,

or virtual machines. TrafficVision uses a

browserbased application which allows anyone with

designated network access to configure analytics

from anywhere. Some of TrafficVisions

accomplishments includes helping the Colorado

Department of Transportation reduce time for

incident detection, helped Kansas City’s electronic

active traffic management systems to increase

incident detection accuracy and decrease incident

response time, and helped the Ministry for

Transportation Ontario assess traffic flow and plan

for traffic management during the 2015

PanAmerican games [23].

Pelco is a company that leads the industry in

video surveillance and security system products and

technologies. More specifically, Pelco specializes in

the development of high-end cameras. Thus, it is no

surprise Pelco has also expanded into providing

services such as monitoring vehicular traffic using

their high-end cameras. With Pelco’s intersection,

roadway, bridge/tunnel management solutions, the

company can provide traffic incident alerts,

analytics about what is causing traffic congestion,

and data for engineering studies such as car and

pedestrian count. Some of Pelco’s notable

accomplishments includes the update of South

Korea’s Cheonan-Nonsan Expressway traffic

camera monitoring system, enhancement to Fresno

Police Department’s surveillance cameras and video

management system, and upgrade of Istanbul

Metropolitan Municipality Traffic Control traffic

cameras and video management system [24].

While the previous companies' services deal with

vehicular traffic data collection in general, Indect is

a company that focuses solely on studying parking.

As Indect specializes in monitoring parking, it

allows them to utilize not only cameras to monitor

parking spots but also ultrasonic sensors to monitor

individual spots. Their camera-based sensor,

UPSOLUT, is placed on the ceiling of a parking

garage in the middle of the parking rows and can

monitor 6 parking spaces at a time in a parking

32

garage. UPSOLUT can monitor parking duration,

turnover, number of entries to spaces in a period,

traffic flow, and even search license plate number.

The camera is also capable of being immersed in

water without being damaged. Indect also develops

an ultrasonic mini sensor, UMS, to monitor

individual paring spots in a parking structure. The

sensor is completely independent with no need of

central control. Indect is not just limited to indoor

parking structures. Indect’s ODE Outdoor Camera

Detection System is designed to detect parking cars

in outdoor parking lots. The system uses a pan-

tiltzoom or fisheye camera, is capable of detecting

20+ spaces with one camera depending on

positioning, and has a controller with artificial

intelligence computing and controls up to 8

cameras. The camera or cameras forwards the video

via Wi-Fi to Indect where detection algorithms

evaluate the space status. The ODE Outdoor

Detection System provides 98% or better accuracy,

given there is a clear view of all the spaces and

heavy rain or other extreme weather conditions are

not present. Indect’s resume of accomplishments is

vast and imppressive. Indect has provided parking

monitoring systems to major airports like John

Wayne Airport, upscale hotels owned by MGM,

universities like Texas A&M, garages in notable

cities like Beverly Hills, and even famous malls like

the Dubai Mall [25].

With all these accomplished companies in the

market, our team’s design clearly falls short in

many ways. However, our system stands out in a

few ways. For instance, save for Miovision’s Scout,

most monitoring systems lack portability, limiting

their systems to mostly permanent fixtures. This

portability allows for quick parking monitoring

endeavors, with little preparation, in a wide array of

locations. Companies are quick to offer the

hardware, but the software that processes data is

proprietary. The main source of revenue for these

companies are in the processing of the video feed

which isn’t typically done on-site in the hardware.

The data is forwarded to their network and is

processed on their end. Our system puts the

hardware and software in the consumers hands.

Because of this, those in academia who wish to

control all aspects of the system will be able to and

can adjust the system as they please.

C. Market Value

The traffic management market is an ever-

growing market. The market will increase and

become more competitive along with advancements

in technology. There are major vendors from all

over the globe, but North America is expected to

have the second-largest market by 2024. As of 2019

the traffic management market is worth USD 30.6

billion and is expected to be worth USD 57.9 billion

by 2024 [26].

Figure 19: Attractive opportunities in the Traffic Management Market [26]

33

 Unfortunately, finding information on the price of

the services and products available is a bit difficult.

The cost of the services provided are determined by

a case by case basis. This is because companies

typically charge for the analysis of the video as an

additional price separate from the hardware they

may provide. This price is determined by how long

the video being analyzed is. This rate isn’t

advertised readily either, as one has to receive a

quote from the company. Thus, purchasing these

products and services is like buying car insurance,

but it’s more ambiguous because these services are

typically only used by municipalities not the general

public. After reaching out to Miovision,

TrafficVision, Pelco, and Indect, only Miovision

gave us information on their Miovision Scout,

which is very similar to our team’s design. We were

informed by an email from a Miovision employee

that the Scout unit costs $5,000.00 just for the

hardware itself. No information was given on the

rate of the video processing price as it varies based

off the unit’s use [22].

D. Refining Needed

By investigating comparable services and

products, looking into the market audience they

supply, and observing the market value they pursue,

the team learned just how lacking our system was.

For our project to be able to compete in the market,

there are still a ton upgrades necessary. To put it

bluntly, our project is still very much a rudimentary

design created by three college students. It goes

without saying, too, that the team also lacks what

companies in the market have plenty of, funding.

Aside from that, even if overhead costs were

magically waved, the deployable prototype needs

many improvements to reach a state in which it can

be manufactured and put on the market.

To begin, our system may need an updated

microprocessor. Although this is one of the best

development boards, the NVIDIA Jetson Nano is

relatively old in terms of architecture. The board

was released on March 18, 2019, but the Maxwell

architecture is 5 years older! [27] This can’t be

controlled, but if we had a development board with

NVIDIA’s Turing architecture, we can utilize

special instruction sets to help accelerate the

machine vision process. The Turing architecture has

special hardware and instruction sets that is

specialized in machine vision applications. [28] As

of writing this document, there is no development

board of that capability ready to buy for consumers.

This may be the Jetson Nano 2. But for now, we are

stuck with the current Jetson Nano and its

limitations. The 4 GB LPDDR4 ram is plenty for

our application, but as you increase the number of

objects to detect, the 4 GB ram becomes a limiting

factor for FPS performance. In our testing, the

Jetson Nano continues to utilize the swap space

since the detection model uses most of ram.

Theoretically, if we had the same Jetson Nano with

at least 8 GB of ram and rerun our controlled tests,

we won’t run into any memory usage issues which

will decrease FPS. FPS doesn’t become a concern

for our application, but our application can have

large workloads, therefore increasing the boards

memory size with a newer architecture may yield

better and more accurate data when doing data

collection with machine vision.

When designing the enclosure, we were limited to

the platform size of the 3D printer. Due to these

limitations the components are fit very tightly inside

the enclosure. One of the walls printed a little

warped so it left a gap in the system that we covered

using silicone. The system needs a sturdier

enclosure that offers a better fit and better

protection. The system could also use a battery that

would allow it to be operated for a few days at a

time.

The system would need a better way to integrate

all the features and components together. Although

the enclosure does a real good job of keeping the

processor and all electrical components bundled

nicely, the camera is simply connected via USB to

the front. If the deployable prototype were to be

released to manufacturing, a camera would need to

be developed in house. The data transfer and

storage via a GUI interfacing with a database would

also need work done. As of now, the database used

is not of the team’s design. A locally stored MySQL

database is used which was a free community

version download. In addition, while the GUI does

filter collected data based off user selected

parameters like time or type of vehicle, it provides

no analytics of the actual data. The recognition

model can also only classify vehicles into categories

34

specified by the COCO dataset. In other words, it

can only classify vehicles into a car, bus, truck, or

motorcycle. And perhaps the biggest flaw of the

system, it can only reliably keep track of four

parking spots at a time. This greatly limits the

parking occupancy data that can be collected per

session.

XI. CONCLUSION

The frustrating and time-consuming task of

finding a place to park is an issue that all drivers

have experienced on numerous occasions. This is

especially true for those who commute to

Sacramento State regularly. After researching the

issue and forming solutions on our own, our naïve

understanding of the issue and its nuances became

more apparent. Thanks to the counsel of Professor

Tatro and Professor Khan, we learned that the

complexity of the issue requires a solution that will

most likely emerge from professionals who are

dedicated to traffic management in general.

However, this potential solution is something that a

team of 3 college students who study computer

engineering and electrical engineering can help the

professionals achieve. Solving an issue,

intentionally, requires information on the issue.

Therefore, the collection of information will then

help professionals move closer to a more tenable

solution to the parking problem. Thus, the project

we set out to create was a system that would collect

parking data that can be used by professionals to

solve the parking issue on Sacramento State and

even other establishments with parking issues.

With the team’s new perspective and a concrete

goal to work towards, the team set out to come up

with the best and most pragmatic design the team

could achieve. The team started with researching

the traffic data collection methods that were

commonly used. One of the most widely used

methods was the utilization of inductor loops. This

method was fairly reliable in terms of collecting

data on when vehicles approached it. However, the

main drawback of this method was that it was

extremely costly, in respect to the team’s budget,

and its invasive instillation was beyond the means

of the team’s capabilities. Not to mention the

permission to effectively build and use this on

campus was out of the question for a group of

undergraduate engineers. In addition, our goal was

to collect as much information as possible; the

inductor loops may be good at counting cars or

indicating when a car has approached it, but it

cannot give any information on the type of car.

Plus, in order to monitor parking spots, the inductor

loops would need to be installed under every

parking spot we wanted to monitor and collect data

on. Doing so would be both costly and impractical

for the team. Therefore, our design idea was shaped

by the requirements that it be cost-effective, easy to

install, portable, and collect more information on

the vehicles, such as its type.

In order to fulfill these requirements, the team

decided to create a system that would use machine

vision on a microprocessor to collect data on

parking areas. Initially, the team started developing

the system with a Raspberry Pi board and Raspberry

Pi Camera V2. However, these parts were

insufficient to run detection models as the

computational power of the Raspberry Pi board was

not fast enough to keep up with the needs of an

image recognition model. The team decided to use

the NVIDIA Jetson Nano development board as it

had a much better GPU and could meet with the

demands of a program that used a recognition

model. In regard to the camera, the team switched

to a USB camera that had a higher quality sensor

and a larger viewing angle. These changes in parts

would better allow the design to identify motor

vehicles and categorize them as either a car, bus,

truck, or motorcycle. Thus, it allowed the system to

run a program to monitor and collect data on

vehicles occupying parking spaces. It also allowed

the system to run a program to count and collect

data on vehicles that entered a parking area. With

more computational power comes more heat,

therefore our team, through some trial and error,

decided to install a Noctua fan to cool the system

and allow it to collect data unencumbered by the

heat it would generate. Since the design idea was

focused on data collection, we needed to find a way

to store and organize the data that can be readily

available to professionals who are working towards

finding a solution to the parking problem.

Therefore, a GUI was developed in Python to

35

interface with a MySQL database. The GUI allowed

the user to transfer and upload the data collected by

the system and can be filtered to find specific types

of data. In order to provide the system with

portability, a power bank was created to allow the

system to run without a nearby power outlet, and an

enclosure was made with 3D printed parts. The

enclosure was capable of housing the power bank,

Jetson Nano development board, and attached

cooling fan.

The budgetary constraints have been mentioned

many times in this paper, because anything beyond

$1,000.00 was basically out of the question. Most of

the budget was used in the first semester as it was

the period in which most of system’s parts would be

purchased. Some parts such as the Raspberry Pi 3

and Raspberry Pi Camera V2 were not used for the

deployable prototype build. However, their share of

the budget was not for nothing as each and every

purchase helped provide a path to the final

deployable prototype. The acquisition of parts and

other development materials came out to $536.00,

which was $464.00 under budget.

The milestones mentioned in this paper, could be

used as an adequate indicator of the team’s

progression from start to finish. As mentioned, the

development of a concise societal problem was

imperative to the inception of our team’s deployable

prototype. Once the team agreed to collect data on

parking statistics to be used by professionals, the

next step was deciding on a design idea. After

consulting with our technical advisors, we decided

to use a classification model running on a

microprocessor, a camera, and a power bank to

collect data on parking statistics and store the

information onto a database. With a design idea in

place, the team set out on completing the laboratory

prototype. Michael and Ryan were primarily

assigned to train and integrate a detection model

that could classify toy-sized vehicles. With the

additional help from Sergio to train the detection

model, the team was able to accomplish the training

and integration of the detection model onto the

Jetson Nano developer board. After this milestone

was accomplished, Michael and Ryan were

assigned to work on the parking spot monitoring

program and car counting program. After failing to

meet the standards of a laboratory prototype, the

team worked on until the next semester. These

programs were later completed, at the laboratory

prototype scale at the beginning of the next

semester. The power bank was completed by Sergio

and was able to successfully supply power to the

system. Changes were later made to the power bank

in the second semester in order to power the system

more reliably. The next milestone completed was

the development of the GUI by Ryan that could

upload data from a flash drive to a MySQL

database. The laboratory prototype version was also

presented, which failed to pass the initial technical

review. Work continued on the GUI and database

until the beginning of the next semester in order to

meet the standards of technical review. After the

team demonstrated a laboratory prototype that met

the standards of the technical review, the team

revisited the societal problem. The next milestone

was accomplished by Michael, which was

integrating a recognition model trained with a

COCO dataset to use our system on a full-scale

vehicle. With this done Michael and Ryan could

now run tests on the spot occupier and car counting

programs. Modifications were made by Michael to

include 4 spots that could be monitored at once.

Ryan helped modify the logic of the program to

include what type of data would be written to the

text file. Thanks to the entire team’s efforts, the

programs were tested to show that the programs

were able to collect data on parked vehicles and

count vehicles entering and exiting a parking area.

The next milestone was the completion of the

deployable prototype version of the GUI which was

upgraded to include the filtering of data entries

stored on the database. This met the feature

requirement of the GUI and database, since it

allowed for the data to be filtered by session

amongst other non-required filtering capabilities

like time range and vehicle type. The next milestone

was the completion of the enclosure made from 3D

printing which was worked on by Sergio and

Michael. It housed the Jetson Nano, fan, power

bank, and displayed the voltage of the battery.

Finally, the last milestone was the presentation of

36

the deployable prototype. In this presentation we

were able to demonstrate a functioning deployable

prototype that could collect data on vehicles in

parking spots and count vehicles entering or exiting

a parking area.

The development path for the project needed to

be treaded carefully in order to avoid risks that

could potentially sink the entire project. This is

especially true when it came to the implementation

and integration of the recognition model. Risks

were organized into those that would affect the

critical development path of our design, and risks

that the team identified that would not. Some of the

risks, as they relate to the critical path of the

deployable prototype’s design, were issues like

overfitting our recognition model. The team was

able to avoid the risk of overfitting the model by

using a recognition model trained with the common

objects in contrast, or COCO, dataset. Other risks

involved the failure of the recognition model to

properly recognize vehicles according to the COCO

dataset. Mitigation plans included changing the

camera, adjusting the framerate in which the

program takes an inference of a video, looking into

other recognition models, and as a last resort

contacting a specialist. Risks that did not relate to

the critical path included the possibility that the

enclosed system may fall and cause damage to the

system or bystanders. This risk could be mitigated

by simply keeping the enclosure near the ground as

much as possible. If placement of the device needs

to be substantially above ground, the system should

be backed up to another Jetson Nano Developer

board. However, the system should entirely avoid

being suspended in a place that could cause harm to

others, no matter what. If anything, the

responsibility of damage caused to others would lie

on the team, and a potential lawsuit would be

devastating to the team’s budget and beyond.

In order to get a better idea of the deployable

prototype’s marketability, the team needed to do

some research on the potential market audience, the

market value, and the design’s biggest competitors.

Typically, the design would be geared towards

professionals who need to collect data on parking

behaviors in order to create more efficient roadways

and better parking areas. These types of

professionals are typically those who work for

transportation municipality departments, such as

Caltrans, in charge of developing and maintaining

vehicular roadways. In terms of market potential,

there is a ton of room for growth. In North America

especially, the market value in traffic management

is expected to grow to USD 57.9 billion [26]. With

such a highly valued market, it has fostered the

development of plenty of products and services by

very large and established companies. In fact,

companies like Miovision have developed a product

very similar to our deployable prototype, the

Miovision Scout.

In order for the deployable prototype to compete

and become ready for manufacturing, many

upgrades need to be implemented. For starters, the

deployable prototype will need to update its

microprocessor. Ideally, a board geared specially

for machine vision programs would a huge

improvement to the performance of the deployable

prototype. NVIDIA, the same company that

developed the Jetson Nano development board, has

developed a new architecture called the Turing

architecture which has specialized hardware

designed to accelerate the machine vision process.

If they implemented this new architecture to a new

development board, it would be a much better

alternative to the current microprocessor the

deployable prototype is using. The database and

GUI would also need work done since the database

used is a locally stored community version MySQL

database and the GUI does not provide any

analytics beyond displaying filtered data. The

recognition model would also need to be retrained

as it can only classify vehicles into categories

specified by the COCO dataset. Currently, it can

only classify vehicles as a car, truck, bus, or

motorcycle. If further distinctions are to be made, it

would need to be retrained with new training data.

37

 REFERENCES

[1] Fhwa.dot.gov, 2019. [Online]. Available: http://www.fhwa.dot.gov/publications/research/op

erations/its/06108/images/fig1_4.gif. [Accessed: 23- Sep- 2019].

[2] “Tegra Linux Driver”, Docs.nvidia.com, 2020. [Online]. Available:

https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%2520Linux%2520Driver%2520Package%2520

Development%2520Guide%2Fpower_management_nano.html%23wwpID0E0MO0HA. [Accessed: 27-

Apr- 2020].

[3] “Rpi Camera Module - eLinux.org”, Elinux.org, 2020. [Online]. Available:

https://elinux.org/Rpi_Camera_Module#Technical_Parameters_.28v.2_board.29. [Accessed: 27- Apr-

2020].

[4] O. Knocklein, “Classification Using Neural Networks”, towardsdatascience.com, 2019. [Online].

Available: https://towardsdatascience.com/classification -using - neural -networks -b8e98f3a904f

[Accessed: 29- Feb- 2020].

[5] A. Sachan, “Zero to Hero: Guide to Object Detection using Deep Learning: Faster R -CNN, YOLO,

SSD”, cv -tricks.com. [Online]. Available: https://cv -tricks.com/object -detection/faster - r -cnn - yolo -

ssd/ [Accessed: 29- Feb- 2020].

[6] missinglink.ai, “Convolutional Neural Network Architecture: Forging Pathways to the Future”.

[Online]. Available: https://missinglink.ai/guides/convolutional -neural - networks/convolutional -neural -

network - architecture -forging -pathways -future/ [Accessed: 29- Feb- 2020].

[7] M. Khoo, “Full-Scale car program”, 2020

[8] M. Khoo, “Prototype car counting program", 2019

[9] S. Battery, “Samsung 25R 18650 2500mAh 20A Battery INR18650 -25R - 18650 Battery Store”,

18650BatteryStore.com, 2020. [Online]. Available: https://www.18650batterystore.com/ProductDetails.

asp?ProductCode=SAMSUNG -25R -18650. [Accessed: 01 - Mar - 2020].

[10] S. Cortes, “Power Bank Testing and Lux Testing”, 2020

[11] R. Uda, “Database and GUI”, 2020

[12] R. Uda, M. Khoo, and S. Cortes, “Expenses”, 2020

[13] M. Khoo, R. Uda, and S. Cortes, “Laboratory Prototype”, 2019

[14] S. Cortes, “Enclosure”, 2020

[15] S. Cortes, M. Khoo, and R. Uda, “Timeline”, 2020

[16] “Overfitting in Machine Learning: What It is and How to Prevent It”, elitedatascience.com, 2019.

[Online]. Available: https://elitedatascience.com/overfitting-in-machinelearning [Accessed: 3- Nov- 2019].

[17] M. Khoo, R. Uda, and S. Cortes, “Risk Assessment Heatmap”, 2019

38

[18] “Special Damages in Breach of Contract”, legalmatch.com, 2019. [Online]. Available:

https://www.legalmatch.com/lawlibrary/article/special-damages-in-breach-ofcontract.html [Accessed: 3-

Nov-2019]

[19] “Zoning Code Parking Regulations - City of Sacramento”, Cityofsacramento.org, 2019. [Online].

Available:

https://www.cityofsacramento.org/CommunityDevelopment/Planning/CurrentPlanning/Zoning/Zoning-

Code-Parking-Regulations. [Accessed: 07- Oct- 2019].

[20] “Project Planning | Caltrans”, Dot.ca.gov, 2020. [Online]. Available:

https://dot.ca.gov/programs/trafficoperations/connected-corridors/project. [Accessed: 24- Feb- 2020].

[21] Safety.fhwa.dot.gov, 2020. [Online]. Available: https://safety.fhwa.dot.gov/rsdp/downloads/fhwasa1

7034.pdf, Pg. 8 [Accessed: 24- Feb- 2020].

[22] “Miovision - Smart cities start here”, Miovision, 2020. [Online]. Available: https://miovision.com/.

[Accessed: 17- Feb- 2020].

[23] “TrafficVision”, TrafficVision, 2020. [Online]. Available: http://www.trafficvision.com/. [Accessed:

19- Feb- 2020].

[24] “Pelco Security Cameras and Surveillance Systems”, Pelco.com, 2020. [Online]. Available:

https://www.pelco.com/. [Accessed: 19- Feb- 2020].

[25] “Parking Guidance Systems | Camera Based Parking Guidance | Parking Signage”, Parking Guidances

Systems from INDECT, 2020. [Online]. Available: https://indect.com/. [Accessed: 19- Feb2020]

[26] T. Market, “Traffic Management Market Size, Share and Global Market Forecast to 2024 |

MarketsandMarkets”, Marketsandmarkets.com, 2020. [Online]. Available:

https://www.marketsandmarkets.com/MarketReports/traffic-management-market-1036.html. [Accessed:

24- Feb- 2020].

[27] N. Newsroom, "NVIDIA Announces Jetson Nano: $99 Tiny, Yet Mighty NVIDIA CUDA-X AI

Computer That Runs All AI Models", NVIDIA Newsroom Newsroom, 2020. [Online]. Available:

https://nvidianews.nvidia.com/news/nvidia-announces-jetson-nano-99-tiny-yet-mighty-nvidia-cuda-x-ai-

computer-that-runs-all-ai-models. [Accessed: 27- Apr- 2020].

[28] Nvidia.com, 2020. [Online]. Available: https://www.nvidia.com/content/dam/en-zz/Solutions/design-

visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf. [Accessed:

27- Apr- 2020].

[29] S. Cortes, R. Uda, and M. Khoo, “System Hardware”, 2020

[30] “Intel Developer Zone Articles”, Strophically35.rssing.com, 2020. [Online]. Available:

http://strophically35.rssing.com/chan-18301187/all_p48.html. [Accessed: 26- Apr- 2020].

[31] Sparkfun.com, 2020. [Online]. Available:

https://www.sparkfun.com/datasheets/Sensors/Imaging/TEMT6000.pdf. [Accessed: 27- Apr- 2020].

39

GLOSSARY

Algorithm: A set of instructions or specifications for performing calculation, data processing, automated

reasoning, and other tasks.

ARM: Advance RISC Machines

BMS: Battery Management System.

Camera Module: A camera module is an image sensor integrated with a lens, control electronics, and an

interface like CSI, Ethernet or plain raw low-voltage differential signaling.

COCO: Common Objects in Context. A library of image datasets used to train classifier models to

recognize certain objects.

CPU: Central Processing Unit.

FPS: Frames Per Second.

General Damages: Damages that compensate for non-quantifiable loss like pain and suffering.

GPU: Graphics Processing Unit.

GUI: Graphical User Interface.

ICM: Integrated Corridor Management.

ITS: Intelligent Transportation Systems.

Mounting Hardware: Physical hardware like hinges or stands, that is used to physically mount the device

to a surface.

NVIDIA Jetson Nano: A microprocessor which has a GPU that is often used in machine vision systems.

ODE: Outdoor Detection System.

OpenCV: Open Source Computer Vision Library.

RCNN: Region Convolutional Neural Network.

RPi: Raspberry Pi.

Special Damages: Damages that compensate for quantifiable monetary loss like medical bills or damaged

property.

SQL: Structured Query Language. The standard language used for relational database management

systems.

SSD MobileNet v2: Single Shot Detector Mobile Net v2. A classifier best geared for mobile devices.

TensorFlow: a free and open-source software library for dataflow and differentiable programming across a

range of tasks.

UMS: Ultrasonic Mini Sensor.

A-1

APPENDIX A. USER MANUAL

A. In the field operation

The device is packaged for operations in standalone use case environments, but at its current prototype

state, the device cannot simply operate and perform its task without an initial setup. This means that the

device requires input (keyboard/mouse) and a display monitor.

1) Place the camera tower in desired location and extend to a desired height and angle

a. For best results angle the camera aiming directly at the vehicles

2) Attach the camera USB to an available USB slot in the microprocessor

Figure A 1: Team4 Device I/O [14]

3) Attach the keyboard/mouse and display monitor to the microprocessor

4) Switch on the device power

a. The device includes two switches on the enclosure; the left switch activates the voltage

regulator and the right switch activates the voltmeter.

5) Log into the machine and start command prompt

6) Change your directory to code/tf_models/research/object_detection

Figure A 2: Team4 Change Directory [7]

A-2

7) Start either the entrance/exit counting program by typing: python3 app_car_count.py

or the car parking detection program: python app_car_park.py

Figure A 3: Team4 Start Program [7]

8) Once you believe you’ve collected enough data, plug in a USB to transfer the data

a. You will need to name the USB device: ECS

9) Press the M key on your keyboard to transfer the data

a. If the transfer was unsuccessful, you can move the data text files onto your USB device:

i. datatext.txt for parking data

ii. carcount.txt for entrance/exit data

10) Go to Error! Reference source not found.section C of this appendix to learn how to read your d

ata

B. Modifying the detection parameters

Parameters for the programs can be easily adjusted by editing the Python programs. To edit the program,

simply use a text editor of your choice: vim, nano, or gedit.

In the following example, we will show how to modify the parameters for the parking spot detection boxes

in app_car_park.py. The parking spots are determined by the size referencing the origin points of the

input video feed’s resolution. By default, the feed is set to 720p which is 1280 by 720 pixels

(horizontal/progressive). The bounding boxes uses the video width and video height and multiplies with a

percentage value to find the top-left and bottom-right coordinates of the bounding boxes. Each parking spot

detection box coordinate is contained in an array. To modify these coordinates, change the values for

parking_spot_tl and parking_spot_br.

Figure A 4: Team4 Car Park App Spots [7]

A-3

By default, the deployable prototype the array contains coordinates for 4 (four) parking spot detection

boxes. If you want to include more bounding boxes, you will need to increase the elements for the data

arrays. Add another zeroed element in: buffer_counter, car_count, grab_vehicle, grab_object_class,

park_counter, and pause.

Figure A 5: Team4 Car Park App Integer Parameters [7]

Add a default False value to the park_detector array.

Figure A 6: Team4 Car Park App Boolean Parameters [7]

Last, add a string value to the vehicle_kind array. Match the default values.

Figure A 7: Team4 Car Park App String Parameters [7]

For the entrance and exit car counting application (app_car_count.py), the method is similar to modifying

the coordinates for the car parking detection application. To move the entrance detection box coordinates,

modify the entrance_tl (top-left coordinate) array and entrance_br (bottom-right coordinate) array.

Figure A 8: Team4 Counting App Entrance Coordinate [7]

For the exit detection bounding box, modify the exit_tl (top-left coordinate) array and the exit_br (bottom-

right coordinate) array.

Figure A 9: Team4 Counting App Exit Coordinate [7]

C. Uploading the collected data to the database

Once the data is transferred to the flash drive, the data can now be transferred to the database stored on the

user’s computer.

1) Insert the flash drive into the computer through the USB port

2) Run the GUI by selecting the guitest.py program

3) To upload the parking data, click the “Import Parking Data” button

A-4

Figure A 10: Team4 Import Parking Data [11]

4) To upload the car counting data, click the “Import Car Count Data” button

Figure A 11: Team4 Import Car Count Data [11]

Now that your data is uploaded, you can now start viewing and filtering your data

1) To show all the entries in the parked car database, click the “Show All Parked Entries” button.

A-5

Figure A 12: Team4 Show All Parked Entries [11]

2) To show entries that are parked during a certain time range, click the scroll boxes to the right of the

“Select Hour Range” button to select your start and end hours. Then press the “Select Hour Range”

button.

Figure A 13: Team4 Select Hour Range [11]

3) To show entries of a certain vehicle type, click the scroll box to the right of the “Select vehicle”

button, select the vehicle you want to view and then press the “Select vehicle” button.

A-6

Figure A 14: Team4 Select Vehicle [11]

4) To show entries of a certain spot, click the scroll box to the right of the “Select spot” button, select

the spot number you want to view and then press the “Select spot” button.

Figure A 15: Team4 Select Spot [11]

5) To show entries of a certain session, click the box to the right of the “Select session” button and

input the session number you want to view and then press the “Select session” button.

A-7

Figure A 16: Team4 Select Session [11]

a) Note: The session numbers are based off how many data collection sessions you have.

i) To view your first session, type “1” into the input box and then click the “Select

session” button.

D. Charging

Charging the system is a very simple task. Simply connect a 9V power adapter into the female barrel DC

jack. Flip the right switch to turn on the voltmeter and charge the system until the voltmeter reaches 7.1

volts. The device can also be used while charging.

B-1

APPENDIX B. HARDWARE

 The hardware used for this project consisted of 12 Samsung 25R 18650 cells and a 2S BMS, which

make up the power bank; an NVIDIA Jetson Nano as the main processor; a USB camera to capture the

footage for the system; a DC voltmeter to display the voltage available in the power bank; a 5v Noctua NF-

A4x20 cooling fan for processor protection; and an LM 2596 DC voltage regulator to ensure the processor

isn’t fried. All the hardware components are enclosed in a 3D printed shell.

Figure B 1: System Hardware [29]

The prolonged use trials were conducted by running the car detection program from the lab prototype on

an endless loop. While the video looped endlessly the voltage displayed on the voltmeter would be

collected at intervals of ten minutes. Two tests were conducted, one of them ran for 1 hour and yielded the

results shown on table 3. The second test conducted ran for 3 hours and offered a much better

understanding of the power bank’s capacity. Both tests were conducted with the development board

operating at max power, meaning it was operating at 20 watts. Our program, however, only requires 5 watts

to operate, thus the power bank can offer around four times more usage per charge than tested. The power

bank can reliably power the system at 20 watts for 3 hours and 30 minutes; but since our program only

requires 5 watts to operate, the power bank can reliably power our system for over 10 hours. And as a

safety measure, the power bank can also be charged while being operated.

B-2

Table B I.

Prolonged Use Test 1 [10]

Table B II.

Prolonged Use Test 2 [10]

C-1

APPENDIX C. SOFTWARE

Software Flowcharts

Figure C 1: Team4 Python Application Workflow [7]

Figure C 2: TensorFlow Object Detection API [30]

C-2

Figure C 3: Training Pipeline [30]

Figure C 4: GUI Flowchart [11]

C-3

Application Specific Code Review for the Car Parking Detection Program

The following is code from app_car_park.py. The subroutine shown here shows how the detected object

checks whether the vehicle is within the confidence level threshold, then checks if the detected object is a

valid motor vehicle (determined by the label map), and finally checks if the detected object is within the

coordinates of the detection boxes.

 153

Check if detected object is a valid motor vehicle, (1 = Sedan, 2 154
Truck, 3 = Bus, 4 = Motorcycle)

Then get the center x and y position: 155

i = 0 156
while i < objects_num: 157

object_class = int(classes[0][i]) 158
 if (float(scores[0][i]) > AVG_CONFIDENCE_THRESHOLD): 159
 if((object_class == 3 or object_class == 4 or object_class == 6 or 160

object_class == 8)):

 x_temp = (int(((boxes[0][i][1]+boxes[0][i][5])/2)*IM_WIDTH)) 161

 y_temp = (int(((boxes[0][i][0]+boxes[0][i][4])/2)*IM_HEIGHT)) 162
 cv2.circle(frame,(x_temp,y_temp), 5, (75,13,180), -1) 163
 j = 0 164

 while(j < spot_count): 165
 if ((x_temp > parking_spot_tl[j][0]) and (x_temp < 166

parking_spot_br[j][0]) and (y_temp > parking_spot_tl[j][1]) and

(y_temp < parking_spot_br[j][1])):

 park_inspace[j] = True 167

 park_counter[j] = park_counter[j] + 1 168
 buffer_counter[j] = 0 169

 if grab_vehicle[j] == 0: 170
 grab_object_class[j] = object_class 171
 grab_vehicle[j] = 1 172

 j = j + 1 173
 i = i + 1 174

Line 167 to line 173 increments an arbitrary counter for each parking spaces detection box. This

continues to tick up as long as the detected object is still within the detection box. At this point, the

program will grab the vehicle type (or class) and the parking spot number.

C-4

The next line of code executes after the detected vehicle leaves the parking detection box after a certain

amount of frame ticks (this is the buffer_counter variable). This check executes for every parking spot.

 while i < spot_count: 177
 if park_counter[i] > 0: 178

 buffer_counter[i] = buffer_counter[i] + 1 179
 180

If no vehicle is within the spot (false alarm), buffer by counting up to 50 181
frames then reset counters

 if buffer_counter[i] > 50: 182

 buffer_counter[i] = 0 183
 park_counter[i] = 0 184

 pause[i] = 0 185
 grab_vehicle[i] = 0 186
 park_detector[i] = False 187

 end_time_val = t 188
 end_time = t.strftime("%H:%M:%S") 189

 datafile = open("datatext.txt", "a+") 190
 idfile = open("entryid.txt", "r+") 191
 entry_id = int(idfile.read()) 192

 datafile.write("%d\t" % entry_id) #Unique key (for SQL) 193
 spot = i + 1 194

 datafile.write("%d\t" % spot) #Parking spot 195
 datafile.write("%s\t" % start_time) #Need to set entry_time when car occupies 196

spot

 datafile.write("%s\t" % end_time) #Need to set exit time when car leaves spot 197
 datafile.write("%s\t" % vehicle_kind[i]) #Vehicle type 198

 car_count[i] = car_count[i] + 1 199
 datafile.write("%d\t" % car_count[i]) #car count 200
 datafile.write("%d\t" % session_id) #session 201

 datafile.write("%s\n" % str(end_time_val - start_time_val)[:-7]) #duration 202
 datafile.close() 203

 entry_id = entry_id + 1 204
 idfile.seek(0) 205
 idfile.truncate() 206

 idfile.write(str(entry_id)) 207
 idfile.close()208

The code resets the values for the parking spot and issues a buffer counter. This will prepare the code for

the next detected vehicle that enters the detection box for the same parking spot. The code also writes all

the data collected onto the datatext.txt file.

C-5

Application Specific Code Review for the Car Counting Program

The following code is for the app_car_count.py program. This code is similar to the app_car_park.py,

but only checks for the two detection boxes: entrance and exit. This is executed as separate if-statements

for every validly detected object.

 153
 i = 0 154
 while i < objects_num: 155

 156
 # Check to see if detected object is equal to or above the threshold 157

 # And check if detected object is a valid motor vehicle, (3 = car, 4 = bus, 6 = 158
truck, 8 = motorcycle)

 object_class = int(classes[0][i]) 159

 object_scores = float(scores[0][i]) 160
 if((object_scores >= AVG_CONFIDENCE_THRESHOLD) and (object_class == 3 or 161

object_class == 4 or object_class == 6 or object_class == 8)):

 162
 # Get the center x and y position 163

 x = int(((boxes[0][i][1]+boxes[0][i][5])/2)*IM_WIDTH) 164
 y = int(((boxes[0][i][0]+boxes[0][i][4])/2)*IM_HEIGHT) 165

 cv2.circle(frame,(x,y), 5, (75,13,180), -1) 166
 167
 # If passes entrance, draw a circle at center of object, and increment entrance 168

counter

 if ((x > entrance_tl[0]) and (x < entrance_br[0]) and (y > entrance_tl[1]) and (y 169

< entrance_br[1])):

 entrance_detection_counter = entrance_detection_counter + 1 170
 entrance_buffer_counter = 0 171

 if grab_vehicle[0] == 0: 172
 grab_object_class[0] = object_class 173

 grab_vehicle[0] = 1 174
 175
 # Do the same for exit area 176

 if ((x > exit_tl[0]) and (x < exit_br[0]) and (y > exit_tl[1]) and (y < 177
exit_br[1])):

 #cv2.circle(frame,(x,y), 5, (75,13,180), -1) 178
 exit_detection_counter = exit_detection_counter + 1 179
 exit_buffer_counter = 0 180

 if grab_vehicle[1] == 0: 181
 grab_object_class[1] = object_class 182

 grab_vehicle[1] = 1 183
 184
 185

i = i + 1 186
 187

C-6

Application Specific Code Review for the GUI Program

The following section is an explanation of the GUI program. It uses the tkinter library to create the GUI

objects (windows, displayed text, buttons, etc.), the mysql.connector library to connect to the MySQL

database and utilize the SQL language, and the shutil library to move files. Upon running the GUI program,

the user is presented with a home window. From here the user can decide to do the following:

1) Import parking data from datatext.txt to the database in the table: parking_data

2) Display all entries currently in the database table: parking_data

3) Display entries that fit user selected time range in the database table: parking_data

4) Display entries that fit user selected vehicle type in the database table: parking_data

5) Display entries that fit user selected spot number in the database table: parking_data

6) Display entries that fit user inputted session number in the database table: parking_data

7) Import car count data from carcount.txt in the database table: count_data

1) Import parking data from datatext.txt to the database in the table: parking_data

Pressing the “Import Parking Data” button on the GUI main window will move the datatext.txt file into

the MySQL Uploads folder. Once this is done, the GUI will connect to the MySQL database. Once

connected, an SQL command is run to upload the data in datatext.txt to the parking_data table. The text file

is then moved back to the USB drive and the update to the database is committed. Connection with the

database is then closed.

2) Display all entries currently in the database table: parking_data

Pressing the “Show All Parked Entries” button on the GUI main window will create another window to

display the soon to be retrieved data. Next, the GUI will connect to the MySQL database. Once connected,

an SQL command is run to retrieve all the data entries in the parking_data table. The data is saved to a

variable. The columns and scroll wheel are then created to display the retrieved data. The columns are filled

in via a for loop with the retrieved data. The connection to the database is then closed. The user can either

close the window and start a new query or keep the window open and start another query.

3) Display entries that fit user selected time range in the database table: parking_data

After a user selects a start hour and end hour in the dropdown boxes, a new window is opened when the

user clicks the “Select Hour” button. The hour values are saved to a variable to be used later. The GUI will

then establish a connection to the MySQL database. Once connected, an SQL command is run to retrieve

data from the database using the variables that stored the start hour and end hour selected from the main

window. The retrieved data entries are then saved to a variable. The columns are filled in via a for loop on

the retrieved data variable. The connection to the database is then closed. The user can either close the

window and start a new query or keep the window open and start another query.

4) Display entries that fit user selected vehicle type in the database table: parking_data

 After a user selects a vehicle type in the dropdown box, and the user clicks the “Select Vehicle” button,

a new window is opened. The vehicle type is saved to a variable to be used for later. The GUI will then

establish a connection to the MySQL database. Once connected, an SQL command is run to retrieve data

from the database using the variable that stored the user selected vehicle type on the main window. The

retrieved data entries are then saved to a variable. The columns are filled in via a for loop on the retrieved

C-7

data variable. The connection to the database is then closed. The user can either close the window and start

a new query or keep the window open and start another query.

5) Display entries that fit user selected spot number in the database table: parking_data

 After a user selects a spot number in the dropdown box, and the user clicks the “Select Spot” button, a

new window is opened. The spot number is saved to a variable to be used for later. The GUI will then

establish a connection to the MySQL database. Once connected, an SQL command is run to retrieve data

from the database using the variable that stored the user selected spot number on the main window. The

retrieved data entries are then saved to a variable. The columns are filled in via a for loop on the retrieved

data variable. The connection to the database is then closed. The user can either close the window and start

a new query or keep the window open and start another query.

6) Display entries that fit user inputted session number in the database table: parking_data

 After a user inputs a session number in the entry field, and the user clicks the “Select Session” button, a

new window is opened. The session number is saved to a variable to be used for later. The GUI will then

establish a connection to the MySQL database. Once connected, an SQL command is run to retrieve data

from the database using the variable that stored the user selected spot number on the main window. The

retrieved data entries are then saved to a variable. If the variable holding the retrieved entries is 0, then the

GUI pops up a window that says an invalid session number was entered. If a variable holding the retrieved

entries is not 0, the columns are filled in via a for loop on the retrieved data variable. The connection to the

database is then closed. The user can either close the window and start a new query or keep the window

open and start another query.

C-8

Software Test Results

Accuracy and usefulness of the object detection is very much related with the combination of the

software and camera hardware. For this section of the software test results, we’ve included test results of

the lighting. In order to test light conditions, a circuit was built employing an Arduino Nano and a

TEMT6000 light sensor to measure the lux at the important areas of the testing location. The datasheet

claims the TEMT6000 measures in lux, but cross tests will be performed with a different lux meter to

confirm this [31]. The ambient light was measured at the position of the camera, at the position of the

vehicle, and recording the ambient light that makes its way into the parking structure from outside. These

tests were conducted at the third floor of parking structure 3 and parking structure 5 in California State

University, Sacramento. As well as the third and fourth floor of parking structure 1. Parking structure 5 has

plenty of lighting while parking structure 1 is the darkest of all the structure.

Figure C 5: TEMT6000 circuit [10]

Through these tests we found that the best lighting for image is along 1,000 lx, which is the value for an

overcast day. This level of light minimizes shadow and glare but also allows for a clear image. None of the

structure at Sacramento State present these ideal lux levels but that was expected. Parking Structure 1 only

presented an average lux level of around 3 lux, so it is the worst option for our system.

Figure C 6: Structure 5 lux level [10]

C-9

 Parking Structure 5 offered the best lux levels, however, due to the LED lights the white vehicles almost

blended in with the surroundings. Darker vehicles were more easily detected.

Figure C 7: Structure 3 lux level [10]

Parking Structure 3 offered less total lux levels, but the lighting worked nicely with white vehicles. There

was enough lighting to clearly view a vehicle and white vehicle didn’t get lost in the lux.

 So, from our tests we concluded that when being placed in an external parking area the ideal lighting is

around 1000 lux, so an overcast day. But if placed in a parking structure, the higher the lux the better, and

LED lights will cause errors.

Testing was done on the system’s GUI and database. We tested the GUI’s ability to transfer data from a

flash drive which recorded data from the NVIDIA Jetson Nano. Specifically, we tested the robustness of

the GUI which should be able to transfer data from a text file while simultaneously preventing the transfer

of entries that have the same primary keys as entries that are already in the database. We also tested the

GUI’s runtime when transferring text files with large amounts of entries to the database. We also tested the

runtime of the GUI when pulling entries from the database. Finally, we tested the GUI’s ability to correctly

filter entries in the database. Testing of the GUI and database was done on a laptop with an Intel(R) Core

(TM) i7-4710HQ CPU running at 2.50 GHz. The GUI was coded in Python 2.7 and the database is a

MySQL Community Version 8.0.

The first GUI and database test were to determine whether or not entries in a text file, to be transferred to

a database, will transfer if the primary keys of the entries in the text file conflict with ones in the database.

To do this test, we used a set of sample data that has entries that conflict with the primary keys of entries in

the database seen in figures 6 and 7. The primary key is the left most column.

C-10

Figure C 8: Primary Key Test: Sample Data in Database [11]

Figure C 9: Primary Key Test: Sample Data to Transfer to Database [11]

Included in the sample data is also an entry with a valid primary key, “29”. This entry should be added to

the database while the first three should not. After trying to upload the data in figure 4, the database was

not updated with the conflicting primary key entries. However, the valid entry was also not uploaded to the

database. Uploading the text file in the MySQL command prompt will accept the valid primary entry, and it

will also deny the invalid primary key entries. However, to accomplish this through our GUI, we need to

include the “IGNORE” SQL command when transferring data from the text file. The “IGNORE” command

will ignore any invalid primary key entries but will transfer entries with valid primary keys.

Regarding transferring data to the database, our next test determines the average runtime the GUI needs

to transfer large amounts of data. The first test consisted of the transfer of a text file with 400 entries. This

transfer was done 28 times. In order to get the runtime, the “time” library was used to get the system time at

the beginning of the transfer. This time was then compared to the system time pulled at the end of the

transfer and their difference represents the runtime of the transfer, which is in seconds. The average

C-11

runtime was calculated to be approximately 0.19806 seconds. The runtimes and average runtime can be

seen in table 3. 28 transfers were also done with a text file with 1,000 entries. The average runtime was

approximately 0.23599 seconds. The runtimes and average runtime can be seen in table 3. It should be

noted that the version of MySQL we are using for the database, MySQL Community Version 8.0, needs to

disable “Safe Update” in the preferences in order to delete all the entries in the database with a single line,

“DELETE FROM parking_data”, where “parking_data” is the name of our table that holds all the entries in

our database.

Table C I.

Runtimes in seconds of GUI to upload 400 entries (left) and 1,000 entries (right) [11]

The average runtime from pulling data from the database was also calculated. The method to calculate

the runtime is the same method used for the test that transfers large amounts of data to the database. The

GUI pulls all the entries in the database. We had 28 trials of the runtime for both 400 entries returned from

the database and 1000 entries returned from the database. The average runtime for returning 400 entries

was approximately 0.01987 seconds. For returning 1,000 entries, the average runtime was approximately

0.03125 seconds.

C-12

Table C II.

Runtimes in seconds of GUI to upload 400 entries (left) and 1,000 entries (right) [11]

The last set of GUI and database tests were the filter tests. Our GUI allows the user to filter the entries in

the database to only return particular entries. The time range filter will return entries that were parked in the

monitored spots within a specified time range picked by the user. In order to test the time range filter, we

uploaded sample data, seen in figure 8, and tested the GUI’s ability to accurately pull entries from the

database based off the parameters selected by the user.

C-13

Figure C 10: Sample Data Used to Test GUI SQL Filters [11]

In the case of the time range filter, the user defines a start hour and an end hour. All entries that have

vehicles that are parked in this hour range will be pulled from the database. As shown in figures 9 and 10,

the GUI accurately pulls all applicable entries that have vehicles parked from the user selected time range:

“08:00:00 – 09:00:00”.

Figure C 11: Time Range Filter of Parking Data: 08:00:00 – 09:00:00 part 1 [11]

C-14

Originally, there was a problem with our logic when filtering for a specific time range. The GUI would

not return entries with vehicles that were parked before the user selected start time and left after the user

selected end time. Entries with EntryID 20 and 23 show that the logic now works since these entries enter

before the user selected start time, 08:00:00, and after the user selected end time, 09:00:00.

The next filter tested was the vehicle filter. This filter will pull any entry that has the user defined vehicle

type. The results can be seen in figure 11, which pulls all entries that were trucks. Figure 12 shows all

entries that were buses. Figure 13 and 14 shows all entries that were cars.

Figure C 12:Vehicle Type Filter of Parking Data: Truck [11]

Figure C 13: Vehicle Type Filter of Parking Data: Bus [11]

C-15

Figure C 14: Vehicle Type Filter of Parking Data: Car part1 [11]

Figure C 15: Vehicle Type Filter of Parking Data: Car part 2 [11]

The combining entries returned from figures 11, 12, 13, and 14 has every, since the combined queries

pull every possible vehicle type stored in the sample database.

D-1

APPENDIX D. MECHANICAL ASPECTS

 The mechanical aspect of this project is simply the 3D printed enclosure; and possibly even a tripod if the

user wishes to use one. The enclosure was design using SolidWorks 3D Design Software and printed

through two different methods. The center piece that works as the system’s harness was printed with

polylactid acid. The five walls surrounding the rest of the system were printed using standardized

photopolymer resin 6mm thick.

Figure D 1: Full enclosure [14]

D-2

Figure D 2: Enclosure with Nano exposed [14]

Figure D 3: Full enclosure profile view [14]

D-3

Figure D 4: Team 4 Full Printed Enclosure Design [14]

E-1

APPENDIX E. VENDOR CONTACTS

On behalf of Team D.c.M.V., thank you Professor Ghazan Khan, from the Civil Engineering Department

at Sacramento State University. He provided invaluable insight on the direction our project should take. Dr.

Khan was gracious enough to offer sponsoring the project, which we did not take up the offer, but we do

appreciate his generosity and kindness.

F-1

APPENDIX F. RESUMES

F-2

F-3

